Basinwide Connections of Upper-Ocean Temperature Variability in the Equatorial Indian Ocean

Ge Song aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Ge Song in
Current site
Google Scholar
PubMed
Close
,
Bohua Huang cDepartment of Atmospheric, Oceanic, and Earth Sciences and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Bohua Huang in
Current site
Google Scholar
PubMed
Close
,
Rongcai Ren aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
dCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China

Search for other papers by Rongcai Ren in
Current site
Google Scholar
PubMed
Close
, and
Zeng-Zhen Hu eClimate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Search for other papers by Zeng-Zhen Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this article, the interannual variability of upper-ocean temperature in the equatorial Indian Ocean (IO) and its basinwide connections are investigated using 58-yr (1958–2015) comprehensive monthly mean ocean reanalysis data. Three leading modes of an empirical orthogonal function (EOF) analysis dominate the variability of upper-ocean temperature in the equatorial IO over a wide range of time scales. A coherent interannual band within the first two EOF modes identifies an oscillation between the zonally tilting thermocline across the equatorial IO in its peak phases and basinwide displacement of the equatorial thermocline in its transitional phases. Consistent with the recharge oscillation paradigm, this oscillation is inherent in the equatorial IO with a quasi-periodicity around 15 months, in which the wind-induced off-equatorial Rossby waves near 5°–10°S provide the phase-transition mechanism. This intrinsic IO oscillation provides the biennial component in the observed IOD variations. The third leading mode shows a nonlinear long-term trend of the upper-ocean temperature, including the near-surface warming along the equatorial Indian Ocean, accompanied by cooling trend in the lower thermocline originating farther south. Such vertical contrary trends may lead to an enhanced stratification in the equatorial IO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ge Song, songge@mail.iap.ac.cn; Rongcai Ren, rrc@lasg.iap.ac.cn

Abstract

In this article, the interannual variability of upper-ocean temperature in the equatorial Indian Ocean (IO) and its basinwide connections are investigated using 58-yr (1958–2015) comprehensive monthly mean ocean reanalysis data. Three leading modes of an empirical orthogonal function (EOF) analysis dominate the variability of upper-ocean temperature in the equatorial IO over a wide range of time scales. A coherent interannual band within the first two EOF modes identifies an oscillation between the zonally tilting thermocline across the equatorial IO in its peak phases and basinwide displacement of the equatorial thermocline in its transitional phases. Consistent with the recharge oscillation paradigm, this oscillation is inherent in the equatorial IO with a quasi-periodicity around 15 months, in which the wind-induced off-equatorial Rossby waves near 5°–10°S provide the phase-transition mechanism. This intrinsic IO oscillation provides the biennial component in the observed IOD variations. The third leading mode shows a nonlinear long-term trend of the upper-ocean temperature, including the near-surface warming along the equatorial Indian Ocean, accompanied by cooling trend in the lower thermocline originating farther south. Such vertical contrary trends may lead to an enhanced stratification in the equatorial IO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ge Song, songge@mail.iap.ac.cn; Rongcai Ren, rrc@lasg.iap.ac.cn
Save
  • Allan, R. J., J. A. Lindesay, and C. J. C. Reason, 1995: Multidecadal variability in the climate system over the Indian Ocean region during the austral summer. J. Climate, 8, 18531873, https://doi.org/10.1175/1520-0442(1995)008<1853:MVITCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, https://doi.org/10.1029/2006GL028044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and R. Murtugudde, 2004: Earth’s Climate. Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 213–246, https://doi.org/10.1029/147GM13.

    • Crossref
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 4156, https://doi.org/10.2151/jmsj.81.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF Ocean Reanalysis System ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T., D. Pierce, K. Achutarao, P. Gleckler, B. Santer, J. Gregory, and W. Washington, 2005: Penetration of human-induced warming into the world’s oceans. Science, 309, 284287, https://doi.org/10.1126/science.1112418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific: Research note. Atmos. Ocean, 35, 367383, https://doi.org/10.1080/07055900.1997.9649597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., B. D. Tapley, and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res., 104, 30353047, https://doi.org/10.1029/1998JC900085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., K.-J. Ha, J.-Y. Lee, B. Wang, B.-H. Kim, and C. E. Chung, 2014: Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Climate Dyn., 43, 535551, https://doi.org/10.1007/s00382-013-2002-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: The “tilt” and “warm water volume” modes. J. Phys. Oceanogr., 40, 121137, https://doi.org/10.1175/2009JPO4263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., A. Storto, S. K. Behera, A. Navarra, and T. Yamagata, 2017: Improved prediction of the Indian Ocean dipole mode by use of subsurface ocean observations. J. Climate, 30, 79537970, https://doi.org/10.1175/JCLI-D-16-0915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. L. Harper, S. G. Philander, B. Winter, and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84, 911920, https://doi.org/10.1175/BAMS-84-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., Z. Wu, and G. Liu, 2014: Fast multidimensional ensemble empirical mode decomposition using a data compression technique. J. Climate, 27, 34923504, https://doi.org/10.1175/JCLI-D-13-00746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean dipole. Deep-Sea Res. II, 50, 22632284, https://doi.org/10.1016/S0967-0645(03)00056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, and S. Wijffels, 2001: Interannual upper ocean variability in the tropical Indian Ocean. Geophys. Res. Lett., 28, 41514154, https://doi.org/10.1029/2001GL013475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, https://doi.org/10.1175/JCLI3478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Guo, F., Q. Liu, J. Yang, and L. Fan, 2018: Three types of Indian Ocean Basin modes. Climate Dyn., 51, 43574370, https://doi.org/10.1007/s00382-017-3676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, and A. Hu, 2006: Interpretation of tropical thermocline cooling in the Indian and Pacific Oceans during recent decades. Geophys. Res. Lett., 33, L23615, https://doi.org/10.1029/2006GL027982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, Y. Masumoto, J. Vialard, and B. Duncan, 2011: Basin resonances in the equatorial Indian Ocean. J. Phys. Oceanogr., 41, 12521270, https://doi.org/10.1175/2011JPO4591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. Ruijter, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, and J. Zhu, 2013: Leading modes of the upper-ocean temperature interannual variability along the equatorial Atlantic Ocean in NCEP GODAS. J. Climate, 26, 46494663, https://doi.org/10.1175/JCLI-D-12-00629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, J. Zhu, B. Huang, Y. Tseng, and X. Wang, 2017: On the shortening of the lead time of ocean warm water volume to ENSO SST since 2000. Sci. Rep., 7, 4294, https://doi.org/10.1038/s41598-017-04566-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007a: Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical Pacific. J. Climate, 20, 29172936, https://doi.org/10.1175/JCLI4151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007b: Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J. Climate, 20, 29372960, https://doi.org/10.1175/JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, J. L. Kinter, Z. Wu, and A. Kumar, 2012: Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: Methodology and composite life cycle. Climate Dyn., 38 (1–2), 123, https://doi.org/10.1007/s00382-011-1250-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, https://doi.org/10.1029/2007RG000228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454, 903995, https://doi.org/10.1098/rspa.1998.0193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ihara, C., Y. Kushnir, and M. A. Cane, 2008: Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J. Climate, 21, 20352046, https://doi.org/10.1175/2007JCLI1945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandar, I., W. Mardiansyah, Y. Masumoto, and T. Yamagata, 2005: Intraseasonal Kelvin waves along the southern coast of Sumatra and Java. J. Geophys. Res, 110, C04013, https://doi.org/10.1029/2004JC002508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550567, https://doi.org/10.1175/2008JCLI2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and B. Huang, 2004: The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res. I, 51, 21232136, https://doi.org/10.1016/j.dsr.2004.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., 1994: A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J. Phys. Oceanogr., 24, 707715, https://doi.org/10.1175/1520-0485(1994)024<0707:AREAOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42, 12431258, https://doi.org/10.1007/s00382-013-1721-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 1996: Lag relationships involving tropical sea surface temperatures. J. Climate, 9, 25682578, https://doi.org/10.1175/1520-0442(1996)009<2568:LRITSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D.-H., M. Zhang, G. Zhang, and Y.-K. Tan, 2005: The study of the occurrence and evolution mechanism of the tropical Indian Ocean dipole (in Chinese). Adv. Mar. Sci., 23, 135143.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27 58927 602, https://doi.org/10.1029/98JC02546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and M. Nagura, 2014: Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dyn., 42, 15691586, https://doi.org/10.1007/s00382-013-1765-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1993: A coupled air–sea biennial mechanism in the tropical Indian and Pacific regions: Role of the ocean. J. Climate, 6, 3141, https://doi.org/10.1175/1520-0442(1993)006<0031:ACASBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, https://doi.org/10.1175/JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14, 545569, https://doi.org/10.1007/s003820050241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584606, https://doi.org/10.1175/1520-0469(1991)048<0584:TSSSTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1997: An analysis of the ENSO signal in the tropical Atlantic and western Indian Oceans. Int. J. Climatol., 17, 345375, https://doi.org/10.1002/(SICI)1097-0088(19970330)17:4<345::AID-JOC127>3.0.CO;2-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padmanabhan, G., and A. R. Rao, 1986: Maximum entropy spectra of some rainfall and river flow time series from southern and central India. Theor. Appl. Climatol., 37, 6373, https://doi.org/10.1007/BF00866105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y. H., and A. H. Oort, 1990: Correlation analyses between sea surface temperature anomalies in the eastern equatorial Pacific and the world ocean. Climate Dyn., 4, 191205, https://doi.org/10.1007/BF00209521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Pierce, D. W., T. P. Barnett, K. M. AchutaRao, P. J. Gleckler, J. M. Gregory, and W. M. Washington, 2006: Anthropogenic warming of the oceans: Observations and model results. J. Climate, 19, 18731900, https://doi.org/10.1175/JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2011: The role of changes in the annual cycle in earlier onset of climatic spring in northern China. Adv. Atmos. Sci., 28, 284296, https://doi.org/10.1007/s00376-010-9221-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S., S. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res. II, 49, 15491572, https://doi.org/10.1016/S0967-0645(01)00158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, N. X., and Z. L. Liu, 2018: Spectrum analysis based on modern signal processing. Comput. Eng. Software, 39, 157159, https://doi.org/10.3969/j.issn.1003-6970.2018.03.035.

    • Search Google Scholar
    • Export Citation
  • Ren, R., S. Sun, Y. Yang, and Q. Li, 2015: Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase. Climate Dyn., 47, 18271844, https://doi.org/10.1007/S00382-015-2935-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., B. Huang, and J. Shukla, 1995: Ocean wave dynamics and El Niño. J. Climate, 8, 24152439, https://doi.org/10.1175/1520-0442(1995)008<2415:OWDAEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51 (1), 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., R. Senan, B. N. Goswami, and J. Vialard, 2007: Intraseasonal variability of equatorial Indian Ocean zonal currents. J. Climate, 20, 30363055, https://doi.org/10.1175/JCLI4166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H. L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swapna, P., R. Krishnan, and J. M. Wallace, 2014: Indian Ocean and monsoon coupled interactions in a warming environment. Climate Dyn., 42, 24392454, https://doi.org/10.1007/s00382-013-1787-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Y., R. Zhang, and J. He, 2003: Features of the interannual variation of sea surface temperature anomalies and the air–sea interaction in tropical IndianOcean (in Chinese). Chin. J. Atmos. Sci., 27, 5366.

    • Search Google Scholar
    • Export Citation
  • Terray, P., and S. Dominiak, 2005: Indian Ocean sea surface temperature and El Niño–Southern Oscillation: A new perspective. J. Climate, 18, 13511368, https://doi.org/10.1175/JCLI3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., and W. B. White, 1997: Evolution of the ENSO signal over the Indo–Pacific domain. J. Phys. Oceanogr., 27, 683696, https://doi.org/10.1175/1520-0485(1997)027<0683:EOTESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L., and W. Han, 2008: Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophys. Res. Lett., 35, L17602, https://doi.org/10.1029/2008GL034687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. Latif, and A. Villwock, 2000: The coupled GCM ECHO-2. J. Climate, 13, 13711383, https://doi.org/10.1175/1520-0442(2000)013<1371:TCGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P., A. Moore, J. Loschnigg, and R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., and B.-W. Shen, 2016: An evaluation of the parallel ensemble empirical mode decomposition method in revealing the role of downscaling processes associated with African easterly waves in tropical cyclone genesis. J. Atmos. Oceanic Technol., 33, 16111628, https://doi.org/10.1175/JTECH-D-15-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., and Y. Tang, 2019: Seasonal predictability of the tropical Indian Ocean SST in the North American Multimodel Ensemble. Climate Dyn., 53, 33613372, https://doi.org/10.1007/s00382-019-04709-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1 (1), 141, https://doi.org/10.1142/S1793536909000047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. Huang, S. Long, and C.-K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894, https://doi.org/10.1073/pnas.0701020104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, https://doi.org/10.1126/science.181.4096.262.

  • Wyrtki, K., 1975: Fluctuations of the dynamic topography in the Pacific Ocean. J. Phys. Oceanogr., 5, 450459, https://doi.org/10.1175/1520-0485(1975)005<0450:FOTDTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. Behera, J.-J. Luo, S. Masson, M. Jury, and S. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–212.

    • Crossref
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and W. Han, 2020: Effects of climate modes on interannual variability of upwelling in the tropical Indian Ocean. J. Climate, 33, 15471573, https://doi.org/10.1175/JCLI-D-19-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. P. Li, J. Q. Xue, J. Feng, Q. Y. Wang, Y. D. Xu, and Y. H. Wang, 2018: Impact of the South China Sea summer monsoon on the Indian Ocean dipole. J. Climate, 31, 65576573, https://doi.org/10.1175/JCLI-D-17-0815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, A. Kumar, and J. L. Kinter III, 2015: Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J. Climate, 28, 79627984, https://doi.org/10.1175/JCLI-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 262 0 0
Full Text Views 1182 395 20
PDF Downloads 661 165 26