• Amrhein, V., S. Greenland, and B. McShane, 2019: Scientists rise up against statistical significance. Nature, 567, 305307, https://doi.org/10.1038/d41586-019-00857-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, https://doi.org/10.1175/MWR-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141, https://doi.org/10.1175/MWR-D-14-00270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnott, J. M., J. L. Evans, and F. Chiaromonte, 2004: Characterization of extratropical transition using cluster analysis. Mon. Wea. Rev., 132, 29162937, https://doi.org/10.1175/MWR2836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baatsen, M., R. J. Haarsma, A. J. Van Delden, and H. de Vries, 2015: Severe autumn storms in future western Europe with a warmer Atlantic Ocean. Climate Dyn., 45, 949964, https://doi.org/10.1007/s00382-014-2329-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieli, M., A. H. Sobel, S. J. Camargo, H. Murakami, and G. A. Vecchi, 2020: Application of the cyclone phase space to extratropical transition in a global climate model. J. Adv. Model. Earth Syst., 12, e2019MS001878, https://doi.org/10.1029/2019MS001878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., and J. D. Doyle, 2019: How the speed and latitude of the jet stream affect the downstream response to recurving tropical cyclones. Mon. Wea. Rev., 147, 32613281, https://doi.org/10.1175/MWR-D-19-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, https://doi.org/10.1175/2010MWR3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, https://doi.org/10.1175/2009MWR2976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., W. Hazeleger, C. Severijns, H. de Vries, A. Sterl, R. Bintanja, G. J. van Oldenborgh, and H. W. van den Brink, 2013: More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett., 40, 17831788, https://doi.org/10.1002/grl.50360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, M., T. Yoshikane, H. Kawase, and F. Kimura, 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method. Hydrol. Res. Lett., 2, 6164, https://doi.org/10.3178/hrl.2.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633, https://doi.org/10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, https://doi.org/10.1175/2008MWR2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553578, https://doi.org/10.1175/MWR3082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlbert, S. H., R. A. Levine, and J. Utts, 2019: Coup de grâce for a tough old bull: “Statistically significant” expires. Amer. Stat., 73, 352357, https://doi.org/10.1080/00031305.2018.1543616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, R., T. Takemi, and O. Arakawa, 2016: A possible reduction in the severity of typhoon wind in the northern part of Japan under global warming: A case study. SOLA, 12, 100105, https://doi.org/10.2151/sola.2016-023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, C., and G. M. Lackmann, 2019: Extratropical transition of Hurricane Irene (2011) in a changing climate. J. Climate, 32, 48474871, https://doi.org/10.1175/JCLI-D-18-0558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, C., and G. M. Lackmann, 2021: The response of extratropical transition of tropical cyclones to climate change: Quasi-idealized numerical experiments. J. Climate, https://doi.org/10.1175/JCLI-D-20-0543.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, https://doi.org/10.1029/2009JD011803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., and Coauthors, 2019: The extratropical transition of tropical cyclones. Part II: Interaction with the midlatitude flow, downstream impacts, and implications for predictability. Mon. Wea. Rev., 147, 10771106, https://doi.org/10.1175/MWR-D-17-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309325, https://doi.org/10.2151/jmsj.2011-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved tropical-cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, https://doi.org/10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, https://doi.org/10.1175/JCLI-D-12-00392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2017: The present-day simulation and twenty-first-century projection of the climatology of extratropical transition in the North Atlantic. J. Climate, 30, 27392756, https://doi.org/10.1175/JCLI-D-16-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malmquist, D. L., 1999: Meteorologists and insurers explore extratropical transition of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 80, 7980, https://doi.org/10.1029/99EO00055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. East Coast cyclone dynamics with climate change. J. Climate, 28, 468484, https://doi.org/10.1175/JCLI-D-14-00418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., 2019: Climate Change Effects on the Extratropical Transition of Tropical Cyclones in High-Resolution Global Simulations. North Carolina State University, 156 pp.

  • Michaelis, A. C., and G. M. Lackmann, 2019: Climatological changes in the extratropical transition of tropical cyclones in high-resolution global simulations. J. Climate, 32, 87338753, https://doi.org/10.1175/JCLI-D-19-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., J. Willison, G. M. Lackmann, and W. A. Robinson, 2017: Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo–global warming simulations. J. Climate, 30, 69056925, https://doi.org/10.1175/JCLI-D-16-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., G. M. Lackmann, and W. A. Robinson, 2019: Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales–Atmosphere (MPAS-A) version 5.1. Geosci. Model Dev., 12, 37253743, https://doi.org/10.5194/gmd-12-3725-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrie, W., Y. Yao, and W. Zhang, 2010: On the impacts of climate change and the upper ocean on midlatitude northwest Atlantic landfalling cyclones. J. Geophys. Res., 115, D23110, https://doi.org/10.1029/2009JD013535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohorsky, R., M. Röthlisberger, C. M. Grams, J. Riboldi, and O. Martius, 2019: The climatological impact of recurving North Atlantic tropical cyclones on downstream extreme precipitation events. Mon. Wea. Rev., 147, 15131532, https://doi.org/10.1175/MWR-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclones. Mon. Wea. Rev., 135, 862876, https://doi.org/10.1175/MWR3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., M. Rantanen, P. Haapanala, J. Räisänen, and H. Järvinen, 2020: The characteristics and structure of extra-tropical cyclones in a warmer climate. Wea. Climate Dyn., 1, 125, https://doi.org/10.5194/wcd-1-1-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Diagnosis of the downstream ridging associated with extratropical transition using short-term ensemble forecasts. J. Atmos. Sci., 67, 817833, https://doi.org/10.1175/2009JAS3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev., 10, 10691090, https://doi.org/10.5194/gmd-10-1069-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasserstein, R. L., and N. A. Lazar, 2016: The ASA statement on p-values: Context, process, and purpose. Amer. Stat., 70, 129133, https://doi.org/10.1080/00031305.2016.1154108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2014: A 40-year climatology of extratropical transition in the eastern North Pacific. J. Climate, 27, 59996015, https://doi.org/10.1175/JCLI-D-13-00645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and P. A. Ullrich, 2017: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophys. Res. Lett., 44, 11411149, https://doi.org/10.1002/2016GL071606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., D. R. Thatcher, and C. Jablonowski, 2017: Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data. J. Adv. Model. Earth Syst., 9, 130148, https://doi.org/10.1002/2016MS000775.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 332 133 0
Full Text Views 154 88 14
PDF Downloads 170 76 12

Storm-Scale Dynamical Changes of Extratropical Transition Events in Present-Day and Future High-Resolution Global Simulations

View More View Less
  • 1 aDepartment of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, Illinois
  • | 2 bDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
Restricted access

Abstract

Tropical cyclones (TCs) propagating into baroclinic midlatitude environments can transform into extratropical cyclones, in some cases resulting in high-impact weather conditions far from the tropics. This study extends analysis of extratropical transition (ET) changes in multiseasonal global simulations using the Model for Prediction Across Scales–Atmosphere (MPAS-A) under present-day and projected future conditions. High resolution (15 km) covers the Northern Hemisphere; TCs and ET events are tracked based on sea level pressure minima accompanied by a warm core and use of a cyclone phase space method. Previous analysis of these simulations showed large changes in ET over the North Atlantic (NATL) basin, with ET events exhibiting a 4°–5° northward latitudinal shift and ~6-hPa strengthening of the post-transition extratropical cyclone. Storm-relative composites, primarily representing post-transformation cold-core events, indicate that this increase in post-transition storm intensity is associated with an intensification of the neighboring upper-level trough and downstream ridge, and a poleward shift in the storm center, conducive to enhanced trough–TC interactions after ET completion. Additionally, the future composite ET event is located in the right-jet entrance of an outflow jet that is strengthened relative to its present-day counterpart. Localized impacts associated with ET events, such as heavy precipitation and strong near-surface winds, are significantly enhanced in the future-climate simulations; 6-hourly precipitation for NATL events increases at a super-Clausius–Clapeyron rate with area-average precipitation increasing over 30%. Furthermore, intensified precipitation contributes to enhanced lower-tropospheric potential vorticity and stronger upper-tropospheric outflow, implying the potential for more extreme downstream impacts under the future climate scenario.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison C. Michaelis, amichaelis@niu.edu

Abstract

Tropical cyclones (TCs) propagating into baroclinic midlatitude environments can transform into extratropical cyclones, in some cases resulting in high-impact weather conditions far from the tropics. This study extends analysis of extratropical transition (ET) changes in multiseasonal global simulations using the Model for Prediction Across Scales–Atmosphere (MPAS-A) under present-day and projected future conditions. High resolution (15 km) covers the Northern Hemisphere; TCs and ET events are tracked based on sea level pressure minima accompanied by a warm core and use of a cyclone phase space method. Previous analysis of these simulations showed large changes in ET over the North Atlantic (NATL) basin, with ET events exhibiting a 4°–5° northward latitudinal shift and ~6-hPa strengthening of the post-transition extratropical cyclone. Storm-relative composites, primarily representing post-transformation cold-core events, indicate that this increase in post-transition storm intensity is associated with an intensification of the neighboring upper-level trough and downstream ridge, and a poleward shift in the storm center, conducive to enhanced trough–TC interactions after ET completion. Additionally, the future composite ET event is located in the right-jet entrance of an outflow jet that is strengthened relative to its present-day counterpart. Localized impacts associated with ET events, such as heavy precipitation and strong near-surface winds, are significantly enhanced in the future-climate simulations; 6-hourly precipitation for NATL events increases at a super-Clausius–Clapeyron rate with area-average precipitation increasing over 30%. Furthermore, intensified precipitation contributes to enhanced lower-tropospheric potential vorticity and stronger upper-tropospheric outflow, implying the potential for more extreme downstream impacts under the future climate scenario.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison C. Michaelis, amichaelis@niu.edu
Save