• Anderson, S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observation and one-dimensional model results. J. Climate, 9, 30563085, https://doi.org/10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., and et al. , 2012: Ocean barrier layer’s effect on tropical cyclone intensification. Proc. Nat. Acad. Sci., 109, 14 34314 347, https://doi.org/10.1073_FPNAS.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., S. Taraphdar, L. R. Leung, G. R. Foltz, and J. A. Knaff, 2014: Cyclone–cyclone interactions through the ocean pathway. Geophys. Res. Lett., 41, 68556862, https://doi.org/10.1002/2014GL061489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., G. R. Foltz, L. R. Leung, J. Kaplan, and W. Xu, 2020: Pronounced impact of salinity on rapidly intensifying tropical cyclones. Bull. Amer. Meteor. Soc., 101, E1497E1511, https://doi.org/10.1175/BAMS-D-19-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., P. J. Flatau, S. Chen, and P. G. Black, 2014: Upper ocean response to the passage of two sequential typhoons. Ocean Sci., 10, 559570, https://doi.org/10.5194/os-10-559-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., and R. Lukas, 1994: The southward intrusion of North Pacific Intermediate Water along the Mindanao coast. J. Phys. Oceanogr., 24, 141154, https://doi.org/10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayanan, E. O., T.-C. Chen, J. C. Argete, M.-C. Yen, and P. D. Nilo, 2011: The effect of tropical cyclones on southwest monsoon rainfall in the Philippines. J. Meteor. Soc. Japan, 89A, 123139, https://doi.org/10.2151/jmsj.2011-A08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. L. Elsberry, and P. A. Harr, 2017: Modeling interaction of a tropical cyclone with its cold wake. J. Atmos. Sci., 74, 39814001, https://doi.org/10.1175/JAS-D-16-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and Y.-C. Hsueh, 2010: Mechanisms of northward-propagating intraseasonal oscillation—A comparison between the Indian Ocean and the western North Pacific. J. Climate, 23, 66246640, https://doi.org/10.1175/2010JCLI3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and et al. , 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., W. S. Kessler, and F. Marin, 2012: Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J. Phys. Oceanogr., 42, 14751485, https://doi.org/10.1175/JPO-D-11-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, https://doi.org/10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., and C. Hénin, 1991: Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J. Geophys. Res., 96, 22 13522 150, https://doi.org/10.1029/91JC02124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597622, https://doi.org/10.1175/JCLI-D-14-00477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, https://doi.org/10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., and et al. , 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 20, 30563082, https://doi.org/10.1175/JCLI4144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and et al. , 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., S. Pezoa, L. Bariteau, D. E. Wolfe, and R. A. Weller, 2012: Evaluation of the accuracy of research vessels as in situ sources of surface flux observations from recent PSD cruises. 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract OS51E-1923, https://ui.adsabs.harvard.edu/abs/2012AGUFMOS51E1923F/abstract.

  • Fine, R. A., R. Lukas, F. M. Bingham, M. J. Warner, and R. H. Gammon, 1994: The western equatorial Pacific: A water mass crossroads. J. Geophys. Res., 99, 25 06325 080, https://doi.org/10.1029/94JC02277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., N. P. Klingaman, C. A. DeMott, and P.-C. Hsu, 2019: Diagnosing ocean feedbacks to the BSISO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 124, 146170, https://doi.org/10.1029/2018JD029303.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and et al. , 2012: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett., 39, L20603, https://doi.org/10.1029/2012GL053335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and B. S. Giese, 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96, 32213237, https://doi.org/10.1029/90JC01775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez, O., J. Jouanno, and F. Durand, 2016: Do the Amazon and Orinoco freshwater plumes really matter for hurricane-induced ocean surface cooling? J. Geophys. Res. Oceans, 121, 21192141, https://doi.org/10.1002/2015JC011021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hormann, V., L. R. Centurioni, L. Rainville, C. M. Lee, and L. J. Braasch, 2014: Response of upper ocean currents to Typhoon Fanapi. Geophys. Res. Lett., 41, 39954003, https://doi.org/10.1002/2014GL060317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, S., D. L. Rudnick, N. Brizuela, and J. N. Moum, 2020: Advection by the North Equatorial Current of a cold wake due to multiple typhoons in the western Pacific: Measurements from a profiling float array. J. Geophys. Res. Oceans, 125, e2019JC015534, https://doi.org/10.1029/2019JC015534.

    • Crossref
    • Export Citation
  • Katsura, S., and J. Sprintall, 2020: Seasonality and formation of barrier layers and associated temperature inversions in the eastern tropical North Pacific. J. Phys. Oceanogr., 50, 791808, https://doi.org/10.1175/JPO-D-19-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteor. Soc. Japan, 88, 475496, https://doi.org/10.2151/jmsj.2010-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindle, J. C., and P. A. Phoebus, 1995: The ocean response to operational westerly wind bursts during the 1991–1992 El Niño. J. Geophys. Res., 100, 48934920, https://doi.org/10.1029/94JC02392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 2523–2539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Crossref
    • Export Citation
  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., L. Wang, M. Peng, B. Wang, C. Zhang, W. Lau, and H.-C. Kuo, 2018: A paper on the tropical intraseasonal oscillation published in 1963 in a Chinese journal. Bull. Amer. Meteor. Soc., 99, 17651779, https://doi.org/10.1175/BAMS-D-17-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., J. Ying, H.-L. Ren, C. Zhang, T. Liu, and X.-X. Tan, 2019: Effects of tropical cyclones on ENSO. J. Climate, 32, 64236443, https://doi.org/10.1175/JCLI-D-18-0821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., D. Ostrenga, W. Teng, and S. Kempler, 2012: Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Amer. Meteor. Soc., 93, 13171325, https://doi.org/10.1175/BAMS-D-11-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357, https://doi.org/10.1029/90JC01951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, K.-J. Ha, and J.-Y. Lee, 2013: Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Climate Dyn., 40, 27612774, https://doi.org/10.1007/s00382-012-1394-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and et al. , 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 1185–1199, https://doi.org/10.1175/BAMS-D-12-00225.1.

    • Crossref
    • Export Citation
  • Payne, R. E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29, 959–970, https://doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2.

    • Crossref
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. L. Rudnick, I. Cerovecki, B. Cornuelle, S. Chen, M. Schonau, J. McClean, and G. Gopalakrishnan, 2015: The Pacific North Equatorial Current: New insights from the Origins of the Kuroshio and Mindanao Currents (OKMC) project. Oceanography, 28, 2433, https://doi.org/10.5670/oceanog.2015.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., 2017: The global climatology of tropical cyclones. Oxford Research Encyclopedia of Natural Hazard Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780199389407.013.79.

    • Crossref
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, https://doi.org/10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and et al. , 2012: Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmos. Chem. Phys., 12, 21172147, https://doi.org/10.5194/acp-12-2117-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, https://doi.org/10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M. C., and D. L. Rudnick, 2015: Glider observations of the North Equatorial Current in the western tropical Pacific. J. Geophys. Res. Oceans, 120, 35863605, https://doi.org/10.1002/2014JC010595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, T., and et al. , 2019: The Saffir–Simpson Hurricane Wind Scale. 4 pp., http://www.nhc.noaa.gov/pdf/sshws.pdf.

  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127, https://doi.org/10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, https://doi.org/10.1029/1999GL011043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and S. J. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 33963407, https://doi.org/10.1175/JAS3539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 73057316, https://doi.org/10.1029/92JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steffen, J., and M. Bourassa, 2018: Barrier layer development local to tropical cyclones based on Argo float observations. J. Phys. Ocean., 48, 19511968, https://doi.org/10.1175/JPO-D-17-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3–5 day period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246, https://doi.org/10.2151/jmsj1965.71.2_221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1993: Distribution and formation of North Pacific Intermediate Water. J. Phys. Oceanogr., 23, 517537, https://doi.org/10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2011: Tropical Rainfall Measuring Mission (TRMM). TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree × 0.25 degree V7, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 6 June 2019, https://doi.org/10.5067/TRMM/TMPA/3H/7.

    • Crossref
    • Export Citation
  • Ullman, D. S., and D. Hebert, 2014: Processing of underway CTD data. J. Atmos. Oceanic Technol., 31, 984998, https://doi.org/10.1175/JTECH-D-13-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 1997: Westerly wind events in the tropical Pacific, 1986–1995: An atlas. Tech. Rep. NOAA/PMEL Tech. Memo. ERL PMEL-109, 222 pp.

  • Vincent, E. M., M. Lengaigne, J. Vialard, G. Madec, N. C. Jourdain, and S. Masson, 2012: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C05023, https://doi.org/10.1029/2011JC007705.

    • Crossref
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. H. Weisberg, 2000: The 1997–98 El Niño evolution relative to previous El Niño events. J. Climate, 13, 488–501, https://doi.org/10.1175/1520-0442(2000)013<0488:TENOER>2.0.CO;2.

    • Crossref
    • Export Citation
  • Wang, Q., and et al. , 2019: Tropical cyclones act to intensify El Niño. Nat. Commun., 10, 3793, https://doi.org/10.1038/s41467-019-11720-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Ma, A. H. Sobel, and M. K. Tippett, 2018: Propagation characteristics of BSISO indices. Geophys. Res. Lett., 45, 99349943, https://doi.org/10.1029/2018GL078321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132,1917:AARMMI.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057,0613:LSDFAW.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1982: Eddies in the Pacific North Equatorial Current. J. Phys. Oceanogr., 12, 746749, https://doi.org/10.1175/1520-0485(1982)012<0746:EITPNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y.-B., S.-J. Chen, I.-L. Zhang, and Y.-L. Hung, 1963: A preliminarily statistic and synoptic study about the basic currents over southeastern Asia and the initiation of typhoon (in Chinese). Acta Meteor. Sin., 33, 206217.

    • Search Google Scholar
    • Export Citation
  • Yan, Y., L. Li, and C. Wang, 2017: The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans, 122, 48294844, https://doi.org/10.1002/2017JC012694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasuda, I., 1997: The origin of the North Pacific Intermediate Water. J. Geophys. Res., 102, 893909, https://doi.org/10.1029/96JC02938.

  • Zang, N., F. Wang, and J. Sprintall, 2020: The intermediate water in the Philippine Sea. J. Oceanol. Limnol., 38, 1343–1353, https://doi.org/10.1007/s00343-020-0035-4.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 368 368 43
Full Text Views 121 121 19
PDF Downloads 162 162 27

Large-Scale State and Evolution of the Atmosphere and Ocean during PISTON 2018

View More View Less
  • 1 a Department of Applied Physics and Applied Mathematics Columbia University, New York, New York
  • | 2 b Lamont-Doherty Earth Observatory, Columbia University, New York, New York
  • | 3 c Scripps Institution of Oceanography, La Jolla, California
  • | 4 d Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 5 e College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment conducted a field campaign in August–October 2018. The R/V Thomas G. Thompson made two cruises in the western North Pacific region north of Palau and east of the Philippines. Using select field observations and global observational and reanalysis datasets, this study describes the large-scale state and evolution of the atmosphere and ocean during these cruises. Intraseasonal variability was weak during the field program, except for a period of suppressed convection in October. Tropical cyclone activity, on the other hand, was strong. Variability at the ship location was characterized by periods of low-level easterly atmospheric flow with embedded westward propagating synoptic-scale atmospheric disturbances, punctuated by periods of strong low-level westerly winds that were both connected to the Asian monsoon westerlies and associated with tropical cyclones. In the most dramatic case, westerlies persisted for days during and after tropical cyclone Jebi had passed to the north of the ship. In these periods, the sea surface temperature was reduced by a couple of degrees by both wind mixing and net surface heat fluxes that were strongly (~200 W m−2) out of the ocean, due to both large latent heat flux and cloud shading associated with widespread deep convection. Underway conductivity–temperature transects showed dramatic cooling and deepening of the ocean mixed layer and erosion of the barrier layer after the passage of Typhoon Mangkhut due to entrainment of cooler water from below. Strong zonal currents observed over at least the upper 400 m were likely related to the generation and propagation of near-inertial currents.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0517.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam Sobel, ahs129@columbia.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex special collection.

Abstract

The Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment conducted a field campaign in August–October 2018. The R/V Thomas G. Thompson made two cruises in the western North Pacific region north of Palau and east of the Philippines. Using select field observations and global observational and reanalysis datasets, this study describes the large-scale state and evolution of the atmosphere and ocean during these cruises. Intraseasonal variability was weak during the field program, except for a period of suppressed convection in October. Tropical cyclone activity, on the other hand, was strong. Variability at the ship location was characterized by periods of low-level easterly atmospheric flow with embedded westward propagating synoptic-scale atmospheric disturbances, punctuated by periods of strong low-level westerly winds that were both connected to the Asian monsoon westerlies and associated with tropical cyclones. In the most dramatic case, westerlies persisted for days during and after tropical cyclone Jebi had passed to the north of the ship. In these periods, the sea surface temperature was reduced by a couple of degrees by both wind mixing and net surface heat fluxes that were strongly (~200 W m−2) out of the ocean, due to both large latent heat flux and cloud shading associated with widespread deep convection. Underway conductivity–temperature transects showed dramatic cooling and deepening of the ocean mixed layer and erosion of the barrier layer after the passage of Typhoon Mangkhut due to entrainment of cooler water from below. Strong zonal currents observed over at least the upper 400 m were likely related to the generation and propagation of near-inertial currents.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0517.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam Sobel, ahs129@columbia.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex special collection.

Supplementary Materials

    • Supplemental Materials (PDF 2.79 MB)
Save