• Ackerman, B., 1956: Buoyancy and precipitation in tropical cumuli. J. Meteor., 13, 302310, https://doi.org/10.1175/1520-0469(1956)013<0302:BAPITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AMAP, 2015: AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers. Arctic Monitoring and Assessment Programme, 116 pp.

  • Angell, J. K., D. H. Pack, and N. Delver, 1969: Brunt-Vaisala oscillations in the planetary boundary layer. J. Atmos. Sci., 26, 12451252, https://doi.org/10.1175/1520-0469(1969)026<1245:BVOITP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, https://doi.org/10.1175/2010JAS3287.1.

  • Breistein, P. M., and H. D. Parry, 1954: Some dynamical aspects of static stability. Mon. Wea. Rev., 82, 355359, https://doi.org/10.1175/1520-0493(1954)082<0355:SDAOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1927: The period of simple vertical oscillations in the atmosphere. Quart. J. Roy. Meteor. Soc., 53, 3032, https://doi.org/10.1002/QJ.49705322103.

    • Search Google Scholar
    • Export Citation
  • Chao, J. P., 1980: The gravitational wave in non-uniform stratification atmosphere and its preliminary application for the prediction of heavy rainfall (in Chinese). Sci. Atmos. Sin., 4, 230235.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., 1982: The instability of the gravity-inertia wave and its relation to low-level jet and heavy rainfall. J. Meteor. Soc. Japan, 60, 10411057, https://doi.org/10.2151/jmsj1965.60.5_1041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., Y. Chen, and S. Deng, 2005: Distribution of Brunt-Vaisala frequency in the stratosphere (in Chinese). J. Univ. Sci. Tech. China, 35, 724736.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., K. Pfeiffer, and J. A. Francis, 2018: Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nat. Commun., 9, 869, https://doi.org/10.1038/s41467-018-02992-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, https://doi.org/10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2019: Tropopause evolution in a rapidly intensifying tropical cyclone: A static stability budget analysis in an idealized axisymmetric framework. J. Atmos. Sci., 76, 209229, https://doi.org/10.1175/JAS-D-18-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 21522158, https://doi.org/10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erler, A. R., and V. Wirth, 2011: The static stability of the tropopause region in adiabatic baroclinic life cycle experiments. J. Atmos. Sci., 68, 11781193, https://doi.org/10.1175/2010JAS3694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1961: Static stability measures in the atmosphere. J. Meteor., 18, 526533, https://doi.org/10.1175/1520-0469(1961)018<0526:SSMITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 22752292, https://doi.org/10.1175/2009JCLI3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412417, https://doi.org/10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Jackett, D. R., and T. J. Mcdougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57, 30503057, https://doi.org/10.1175/1520-0469(2000)057<3050:TSSOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaluza, T., D. Kunkel, and P. Hoor, 2019: Composite analysis of the tropopause inversion layer in extratropical baroclinic waves. Atmos. Chem. Phys., 19, 66216636, https://doi.org/10.5194/acp-19-6621-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, B., M. Stone, H. Zhang, T. Gerkema, M. Marder, R. B. Scott, and H. L. Swinney, 2012: Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans. J. Geophys. Res., 117, C04008, https://doi.org/10.1029/2011JC007681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, D., and et al. , 2019: Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves. Atmos. Chem. Phys., 19, 12 60712 630, https://doi.org/10.5194/acp-19-12607-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, A., P. Konopka, R. Müller, L. Pan, C. Schiller, and F. Rohrer, 2009: High static stability in the mixing layer above the extratropical tropopause. J. Geophys. Res., 114, D16305, https://doi.org/10.1029/2009JD011840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., and W. M. Frank, 2005: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part I: Dry experiments. J. Atmos. Sci., 62, 39553973, https://doi.org/10.1175/JAS3575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W., and M. Mak, 1994: Observed variability in the large-scale static stability. J. Atmos. Sci., 51, 21372144, https://doi.org/10.1175/1520-0469(1994)051<2137:OVITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M. C., 1978: The triggering effect of gravity wave on the heavy rainfalls (in Chinese). Sci. Atmos. Sin., 2, 201209.

  • Liu, D., and S. Gao, 2003: The Brunt-Vaisala frequency in a saturated atmosphere and the revised equivalent potential temperature (in Chinese). Acta Meteor. Sin., 61, 379383.

    • Search Google Scholar
    • Export Citation
  • Lu, E., and J. Tu, 2020: Relative importance of surface air temperature and density to interannual variations in monthly surface atmospheric pressure. Int. J. Climatol., 41, E819E831, https://doi.org/10.1002/JOC.6730.

    • Search Google Scholar
    • Export Citation
  • Lu, E., E. S. Takle, and J. Manoj, 2010: The relationships between climatic and hydrological changes in the upper Mississippi River basin: A SWAT and multi-GCM study. J. Hydrometeor., 11, 437451, https://doi.org/10.1175/2009JHM1150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, E., and et al. , 2014: Changes of summer precipitation in China: The dominance of frequency and intensity and linkage with changes in moisture and air temperature. J. Geophys. Res. Atmos., 119, 12 57512 587, https://doi.org/10.1002/2014JD022456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, E., and et al. , 2015: Is the interannual variability of summer rainfall in China dominated by precipitation frequency or intensity? An analysis of relative importance. Climate Dyn., 47, 6777, https://doi.org/10.1007/s00382-015-2822-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McHugh, J. P., 2015: Incidence and reflection of internal waves and wave-induced currents at a jump in buoyancy frequency. Nonlinear Process. Geophys., 22, 269315, https://doi.org/10.5194/NPG-22-259-2015, 2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. Hebert, C. A. Paulson, D. R. Caldwell, M. J. McPhaden, and H. Peters, 1992: Internal waves, dynamic instabilities, and turbulence in the equatorial thermocline: An introduction to three papers in this issue. J. Phys. Oceanogr., 22, 13571359, https://doi.org/10.1175/1520-0485(1992)022<1357:IWDIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note, NCAR/TN-486+STR, 283 pp., https://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Potetyunko, E. N., L. V. Cherkesov, and D. S. Shubin, 2003: Reconstruction of the linear distribution of the squared buoyancy frequency according to the known dispersion properties of the field of internal waves. Phys. Oceanogr., 13, 88103, https://doi.org/10.1023/A:1023796329811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., P. N. Schumacher, and C. A. Doswell, 2000: The intricacies of instabilities. Mon. Wea. Rev., 128, 41434148, https://doi.org/10.1175/1520-0493(2000)129<4143:TIOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 2000: On moist instability. Mon. Wea. Rev., 128, 41394142, https://doi.org/10.1175/1520-0493(2000)129<4139:OMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skopovi, I., and T. R. Akylas, 2007: The role of buoyancy–frequency oscillations in the generation of mountain gravity waves. Theor. Comput. Fluid Dyn., 21, 423433, https://doi.org/10.1007/s00162-007-0061-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soldatenko, S. A., 2014: Influence of atmospheric static stability and meridional temperature gradient on the growth in amplitude of synoptic-scale unstable waves. Izv. Atmos. Ocean. Phys., 50, 554561, https://doi.org/10.1134/S0001433814060152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J., and E. Lu, 2020: Relative importance of water vapor and air temperature in the interannual variation of the seasonal precipitation: A comparison of the physical and statistical methods. Climate Dyn., 54, 36553670, https://doi.org/10.1007/s00382-020-05197-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaisala, V., 1925: Uber die Wirkung der Windschwankungen auf die Pilot beobachtungen. Soc. Sci. Fennica Comment. Phys.-Math., 2, 37.

  • VanHaren, H., and C. Millot, 2006: Determination of buoyancy frequency in weakly stable waters. J. Geophys. Res., 111, C03014, https://doi.org/10.1029/2005JC003065.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2003: Static stability in the extratropical tropopause region. J. Atmos. Sci., 60, 13951409, https://doi.org/10.1175/1520-0469(2003)060<1395:SSITET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Zhang, C. Huang, K. Huang, and Y. Gong, 2019: The tropopause inversion layer interaction with the inertial gravity wave activities and its latitudinal variability. J. Geophys. Res. Atmos., 124, 75127522, https://doi.org/10.1029/2019JD030309.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 149 149 40
Full Text Views 66 66 26
PDF Downloads 85 85 35

Temporal–Spatial Variations of Atmospheric Static Stability: A Comparison of the Influences from Temperature and Its Vertical Difference

View More View Less
  • 1 a Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

The temporal–spatial variations of the static stability of dry air and the relative importance of their influencing quantities are explored. Derivation shows that while it links to the vertical difference of temperature, static stability also relates to the temperature itself. The static stability is expressed as a nonlinear function of temperature and the vertical difference of temperature. The relative importance of the two influencing quantities is assessed with linear regression. Tests show that the linear fitting method is robust. The results of the dominance rely on the data examined, which include an interannual variation, a seasonal variation, and a spatial variation that consists of the grid points over the globe. It is revealed that in the lower troposphere, while the temporal variations of static stability are dominated by the vertical difference of temperature, the temperature itself may also have considerable influence, especially over the high latitudes of the two hemispheres. In the stratosphere, temperature tends to have more contributions. Over the Antarctic, temperature dominates the seasonal and interannual variations of the static stability. The spatial variation of the static stability of July is influenced by both temperature and its vertical difference before 1980, but after that it is dominated by temperature.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Er Lu, elu@nuist.edu.cn

Abstract

The temporal–spatial variations of the static stability of dry air and the relative importance of their influencing quantities are explored. Derivation shows that while it links to the vertical difference of temperature, static stability also relates to the temperature itself. The static stability is expressed as a nonlinear function of temperature and the vertical difference of temperature. The relative importance of the two influencing quantities is assessed with linear regression. Tests show that the linear fitting method is robust. The results of the dominance rely on the data examined, which include an interannual variation, a seasonal variation, and a spatial variation that consists of the grid points over the globe. It is revealed that in the lower troposphere, while the temporal variations of static stability are dominated by the vertical difference of temperature, the temperature itself may also have considerable influence, especially over the high latitudes of the two hemispheres. In the stratosphere, temperature tends to have more contributions. Over the Antarctic, temperature dominates the seasonal and interannual variations of the static stability. The spatial variation of the static stability of July is influenced by both temperature and its vertical difference before 1980, but after that it is dominated by temperature.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Er Lu, elu@nuist.edu.cn
Save