• Adkins, J., P. Demenocal, and G. Eshel, 2006: The “African humid period” and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C. Paleoceanography, 21, PA4203, https://doi.org/10.1029/2005PA001200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and N. M. Mahowald, 2019: Paleodust insights into dust impacts on climate. J. Climate, 32, 78977913, https://doi.org/10.1175/JCLI-D-18-0742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and et al. , 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541570, https://doi.org/10.1002/2013MS000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and et al. , 2015: Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives. Climate Past, 11, 869903, https://doi.org/10.5194/cp-11-869-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, J., and et al. , 2020: Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun., 11, 4726, https://doi.org/10.1038/s41467-020-18478-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., and J. A. Davies, 1989: Surface albedo estimates from Nimbus-7 ERB data and a two-stream approximation of the radiative transfer equation. J. Climate, 2, 409418, https://doi.org/10.1175/1520-0442(1989)002<0409:SAEFNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, https://doi.org/10.1002/jgrd.50206.

  • Bova, S., Y. Rosenthal, Z. Liu, S. P. Godad, and M. Yan, 2021: Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589, 548553, https://doi.org/10.1038/s41586-020-03155-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and et al. , 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, https://doi.org/10.5194/cp-3-261-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., G. Danabasoglu, and W. G. Large, 2010: An overflow parameterization for the ocean component of the Community Climate System Model. NCAR Tech. Note NCAR/TN-481+STR, 72 pp.

  • Brierley, C. M., and et al. , 2020: Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations. Climate Past, 16, 18471872, https://doi.org/10.5194/cp-16-1847-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., and et al. , 2020: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate Past, 16, 17771805, https://doi.org/10.5194/cp-16-1777-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandan, D., and W. R. Peltier, 2020: African Humid Period precipitation sustained by robust vegetation, soil, and lake feedbacks. Geophys. Res. Lett., 47, e2020GL088728, https://doi.org/10.1029/2020GL088728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., J. Bader, S. Sordoni, D. Ferreira, and J. Jungclaus, 2019: Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett., 46, 15911601, https://doi.org/10.1029/2018GL081589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., J. R. Brown, A. Moise, H. Nguyen, P. L. S. Dias, and J. Jungclaus, 2020: Contrasting Southern Hemisphere monsoon response: Mid-Holocene orbital forcing versus future greenhouse gas–induced global warming. J. Climate, 33, 95959613, https://doi.org/10.1175/JCLI-D-19-0672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and et al. , 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

  • Davies, F. J., H. Renssen, M. Blaschek, and F. Muschitiello, 2015: The impact of Sahara desertification on Arctic cooling during the Holocene. Climate Past, 11, 571586, https://doi.org/10.5194/cp-11-571-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • deMenocal, P., J. Ortiz, T. Guilderson, J. Adkins, M. Sarnthein, L. Baker, and M. Yarusinsky, 2000: Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quat. Sci. Rev., 19, 347361, https://doi.org/10.1016/S0277-3791(99)00081-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J., and et al. , 2012: First dairying in green Saharan Africa in the fifth millennium BC. Nature, 486, 390394, https://doi.org/10.1038/nature11186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, S. Fiedler, and O. Doherty, 2014: An analysis of aeolian dust in climate models. Geophys. Res. Lett., 41, 59966001, https://doi.org/10.1002/2014GL060545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, S., M. L. Kaplan, and P. Knippertz, 2015: The importance of Harmattan surges for the emission of North African dust aerosol. Geophys. Res. Lett., 42, 94959504, https://doi.org/10.1002/2015GL065925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2008: Impact of Saharan dust on tropical North Atlantic SST. J. Climate, 21, 50485060, https://doi.org/10.1175/2008JCLI2232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaetani, M., G. Messori, Q. Zhang, C. Flamant, and F. S. R. Pausata, 2017: Understanding the mechanisms behind the northward extension of the West African monsoon during the mid-Holocene. J. Climate, 30, 76217642, https://doi.org/10.1175/JCLI-D-16-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., C. Kubatzki, M. Claussen, V. Brovkin, and V. Petoukhov, 1998: The influence of vegetation–atmosphere–ocean interaction on climate during the mid-Holocene. Science, 280, 19161919, https://doi.org/10.1126/science.280.5371.1916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasse, F., 2000: Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev., 19, 189211, https://doi.org/10.1016/S0277-3791(99)00061-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hély, C., A. M. Lezine, and A. Contributors, 2014: Holocene changes in African vegetation: Tradeoff between climate and water availability. Climate Past, 10, 681686, https://doi.org/10.5194/cp-10-681-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hessler, I., and et al. , 2014: Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions. Climate Past, 10, 22372252, https://doi.org/10.5194/cp-10-2237-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J. M., and et al. , 2020: The Atlantic meridional overturning circulation in high-resolution models. J. Geophys. Res. Oceans, 125, 125, https://doi.org/10.1029/2019JC015522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoelzmann, P., D. Jolly, S. P. Harrison, F. Laarif, R. Bonnefille, and H. J. Pachur, 1998: Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: A data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochem. Cycles, 12, 3551, https://doi.org/10.1029/97GB02733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J. A., 2008: How the Sahara became dry. Science, 320, 752753, https://doi.org/10.1126/science.1158105.

  • Hopcroft, P. O., and P. J. Valdes, 2019: On the role of dust–climate feedbacks during the mid-Holocene. Geophys. Res. Lett., 46, 16121621, https://doi.org/10.1029/2018GL080483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A. X., and et al. , 2016: Impact of solar panels on global climate. Nat. Climate Change, 6, 290294, https://doi.org/10.1038/nclimate2843.

  • Huang, J. P., T. H. Wang, W. C. Wang, Z. Q. Li, and H. R. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, https://doi.org/10.1002/2014JD021796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model, documentation and software user’s manual, version 4.1. Rep. LA-CC-06-012, 76 pp., http://csdms.colorado.edu/w/images/CICE_documentation_and_software_user's_manual.pdf.

  • Huo, Y., W. R. Peltier, and D. Chandan, 2021: Mid-Holocene monsoons in South and Southeast Asia: Dynamically downscaled simulations and the influence of the Green Sahara. Climate Past, https://doi.org/10.5194/cp-2021-17, in press.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., and et al. , 2020: Impact of ocean resolution and mean state on the rate of AMOC weakening. Climate Dyn., 55, 17111732, https://doi.org/10.1007/s00382-020-05345-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolly, D., and et al. , 1998: Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years. J. Biogeogr., 25, 10071027, https://doi.org/10.1046/j.1365-2699.1998.00238.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and K. Taylor, 1995: Status of the Paleoclimate Modeling Intercomparison Project (PMIP). Proc. First Int. AMIP Conf., Geneva, Switzerland, WMO, 425430.

  • Kaufman, D., and et al. , 2020: Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data, 7, 201, https://doi.org/10.1038/s41597-020-0530-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1988: Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241, 10431052, https://doi.org/10.1126/science.241.4869.1043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and B. L. Ottobliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general-circulation model. J. Atmos. Sci., 39, 11771188, https://doi.org/10.1175/1520-0469(1982)039<1177:TSOTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518536, https://doi.org/10.1175/1520-0485(2001)031<0518:ECOAGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and K. M. Kim, 2007: Cooling of the Atlantic by Saharan dust. Geophys. Res. Lett., 34, L23811, https://doi.org/10.1029/2007GL031538.

  • Lau, K. M., K. M. Kim, Y. C. Sud, and G. K. Walker, 2009: A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann. Geophys., 27, 40234037, https://doi.org/10.5194/angeo-27-4023-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model Earth Syst., 3, 27, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lézine, A. M., C. Hely, C. Grenier, P. Braconnot, and G. Krinner, 2011: Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data. Quat. Sci. Rev., 30, 30013012, https://doi.org/10.1016/j.quascirev.2011.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and et al. , 2018: Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science, 361, 10191022, https://doi.org/10.1126/science.aar5629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. T., and et al. , 2019: Mid-Holocene climate change over China: Model–data discrepancy. Climate Past, 15, 12231249, https://doi.org/10.5194/cp-15-1223-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lippold, J., and et al. , 2019: Constraining the variability of the Atlantic meridional overturning circulation during the Holocene. Geophys. Res. Lett., 46, 11 33811 346, https://doi.org/10.1029/2019GL084988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., A. V. Fedorov, S. P. Xie, and S. N. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. G., M. Zhang, Z. Y. Liu, Y. Xia, Y. Huang, Y. R. Peng, and J. Zhu, 2018: A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep., 8, 4434, https://doi.org/10.1038/s41598-018-22841-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., and et al. , 2014: The Holocene temperature conundrum. Proc. Natl. Acad. Sci. USA, 111, E3501E3505, https://doi.org/10.1073/pnas.1407229111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo, 2006: Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111, D10202, https://doi.org/10.1029/2005JD006653.

    • Search Google Scholar
    • Export Citation
  • Manning, K., and A. Timpson, 2014: The demographic response to Holocene climate change in the Sahara. Quat. Sci. Rev., 101, 2835, https://doi.org/10.1016/j.quascirev.2014.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcott, S. A., J. D. Shakun, P. U. Clark, and A. C. Mix, 2013: A reconstruction of regional and global temperature for the past 11,300 years. Science, 339, 11981201, https://doi.org/10.1126/science.1228026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsicek, J., B. N. Shuman, P. J. Bartlein, S. L. Shafer, and S. Brewer, 2018: Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 554, 9296, https://doi.org/10.1038/nature25464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, D., P. B. deMenocal, G. Winckler, J. B. W. Stuut, and L. I. Bradtmiller, 2013: The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett., 371–372, 163176, https://doi.org/10.1016/j.epsl.2013.03.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J. M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837, https://doi.org/10.1038/nature02494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., D. L. R. Hodson, J. I. Robson, R. T. Sutton, R. A. Wood, and J. A. Hunt, 2015: Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett., 42, 59265934, https://doi.org/10.1002/2015GL064360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and et al. , 2018: Preindustrial control simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst., 10, 30493075, https://doi.org/10.1029/2018MS001495.

    • Search Google Scholar
    • Export Citation
  • Monerie, P. A., M. Biasutti, and P. Roucou, 2016: On the projected increase of Sahel rainfall during the late rainy season. Int. J. Climatol., 36, 43734383, https://doi.org/10.1002/joc.4638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschitiello, F., Q. Zhang, H. S. Sundqvist, F. J. Davies, and H. Renssen, 2015: Arctic climate response to the termination of the African Humid Period. Quat. Sci. Rev., 125, 9197, https://doi.org/10.1016/j.quascirev.2015.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp., www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. H. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, H. C., and et al. , 2018: Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun., 9, 2947, https://doi.org/10.1038/s41467-018-05312-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and et al. , 2017: The PMIP4 contribution to CMIP6—Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev., 10, 39794003, https://doi.org/10.5194/gmd-10-3979-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., G. Messori, and Q. Zhang, 2016: Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett., 434, 298307, https://doi.org/10.1016/j.epsl.2015.11.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., and et al. , 2017a: Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period. Proc. Natl. Acad. Sci. USA, 114, 62216226, https://doi.org/10.1073/pnas.1619111114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., and et al. , 2017b: Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nat. Commun., 8, 16020, https://doi.org/10.1038/ncomms16020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., and T. Webb, 1998: BIOME 6000: Reconstructing global mid-Holocene vegetation patterns from palaeoecological records. J. Biogeogr., 25, 9971005, https://doi.org/10.1046/j.1365-2699.1998.00235.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., H. T. Hewitt, P. Hyder, D. Ferreira, S. A. Josey, M. Mizielinski, and A. Shelly, 2016: Impact of ocean resolution on coupled air–sea fluxes and large-scale climate. Geophys. Res. Lett., 43, 10 43010 438, https://doi.org/10.1002/2016GL070559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockwood, A. A., and S. K. Cox, 1978: Satellite inferred surface albedo over northwestern Africa. J. Atmos. Sci., 35, 513522, https://doi.org/10.1175/1520-0469(1978)035<0513:SISAON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagoo, N., and T. Storelvmo, 2017: Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett., 44, 58075817, https://doi.org/10.1002/2017GL072584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sein, D. V., and et al. , 2018: The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model. J. Adv. Model. Earth Syst., 10, 20262041, https://doi.org/10.1029/2018MS001327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, N., N. M. Avellaneda, and D. Stammer, 2014: Large-scale impact of Saharan dust on the North Atlantic Ocean circulation. J. Geophys. Res. Oceans, 119, 704730, https://doi.org/10.1002/2013JC009274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanahan, T. M., and et al. , 2015: The time-transgressive termination of the African Humid Period. Nat. Geosci., 8, 140144, https://doi.org/10.1038/ngeo2329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X. X., and G. Lohmann, 2016: Simulated response of the mid-Holocene Atlantic meridional overturning circulation in ECHAM6-FESOM/MPIOM. J. Geophys. Res. Oceans, 121, 64446469, https://doi.org/10.1002/2015JC011584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and J. C. McWilliams, 2003: Anisotropic horizontal viscosity for ocean models. Ocean Modell., 5, 129156, https://doi.org/10.1016/S1463-5003(02)00016-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and P. Gent, 2010: The Parallel Ocean Program (POP) reference manual, ocean component of the Community Climate System Model (CCSM). Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 141 pp.

  • Stouffer, R. J., and et al. , 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W. Y., and et al. , 2019: Northern Hemisphere land monsoon precipitation increased by the green Sahara during middle Holocene. Geophys. Res. Lett., 46, 98709879, https://doi.org/10.1029/2019GL082116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226, https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. J., C. B. Skinner, C. J. Poulsen, and J. Zhu, 2019: Modulation of mid-Holocene African rainfall by dust aerosol direct and indirect effects. Geophys. Res. Lett., 46, 39173926, https://doi.org/10.1029/2018GL081225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R. H., and et al. , 2016: Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust–climate feedbacks. Sci. Adv., 2, e1600445, https://doi.org/10.1126/sciadv.1600445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and Q. Wen, 2020: Investigating the role of the Tibetan Plateau in the formation of Atlantic meridional overturning circulation. J. Climate, 33, 35853601, https://doi.org/10.1175/JCLI-D-19-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., H. Liao, H. J. Wang, S. L. Li, and J. P. Tang, 2011: Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmos. Chem. Phys., 11, 60496062, https://doi.org/10.5194/acp-11-6049-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 471 471 64
Full Text Views 107 107 20
PDF Downloads 141 141 23

AMOC and Climate Responses to Dust Reduction and Greening of the Sahara during the Mid-Holocene

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
  • | 2 b Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • | 3 c GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • | 4 d Key Laboratory for Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
  • | 5 e State Key Laboratory Cultivation Base of Geographical Environment Evolution of Jiangsu Province, Nanjing Normal University, Nanjing, China
  • | 6 f Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China
  • | 7 g School of Geography, Nanjing Normal University, Nanjing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

North Africa was green during the mid-Holocene [about 6000 years ago (6 ka)] and emitted much less dust to the atmosphere than in the present day. Here we use a fully coupled atmosphere–ocean general circulation model, CESM1.2.2, to test the impact of dust reduction and greening of the Sahara on the Atlantic meridional overturning circulation (AMOC) during this period. Results show that dust removal leads to a decrease of AMOC by 6.2% while greening of the Sahara with 100% shrub (100% grass) cover causes an enhancement of the AMOC by 6.1% (4.8%). The AMOC is increased by 5.3% (2.3%) when both the dust reduction and green Sahara with 100% shrub (100% grass) are considered. The AMOC changes are primarily due to the precipitation change over the west subtropical North Atlantic, from where the salinity anomaly is advected to the deep-water formation region. Global-mean surface temperature increases by 0.09° and 0.40°C (0.25°C) when global dust is removed and when North Africa and the Arabian region are covered by shrub (grass), respectively, showing a dominating effect of vegetation over dust. The comparison between modeled and reconstructed sea surface temperature is improved when the effect of vegetation is considered. The results may have implications for climate impact of future wetting over North Africa, either through global warming or through building of solar farms and wind farms.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonggang Liu, ygliu@pku.edu.cn

Abstract

North Africa was green during the mid-Holocene [about 6000 years ago (6 ka)] and emitted much less dust to the atmosphere than in the present day. Here we use a fully coupled atmosphere–ocean general circulation model, CESM1.2.2, to test the impact of dust reduction and greening of the Sahara on the Atlantic meridional overturning circulation (AMOC) during this period. Results show that dust removal leads to a decrease of AMOC by 6.2% while greening of the Sahara with 100% shrub (100% grass) cover causes an enhancement of the AMOC by 6.1% (4.8%). The AMOC is increased by 5.3% (2.3%) when both the dust reduction and green Sahara with 100% shrub (100% grass) are considered. The AMOC changes are primarily due to the precipitation change over the west subtropical North Atlantic, from where the salinity anomaly is advected to the deep-water formation region. Global-mean surface temperature increases by 0.09° and 0.40°C (0.25°C) when global dust is removed and when North Africa and the Arabian region are covered by shrub (grass), respectively, showing a dominating effect of vegetation over dust. The comparison between modeled and reconstructed sea surface temperature is improved when the effect of vegetation is considered. The results may have implications for climate impact of future wetting over North Africa, either through global warming or through building of solar farms and wind farms.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonggang Liu, ygliu@pku.edu.cn
Save