Abstract
Persistent drought events that cause serious damage to the economy and environment are usually intensified by the feedback between the land surface and atmosphere. Therefore, reasonably modeling land–atmosphere coupling is critical for skillful prediction of persistent droughts. However, most high-resolution regional climate modeling has focused on the amplification effect of land–atmosphere coupling on local anticyclonic circulation anomalies, while less attention has been paid to the nonlocal influence through altering large-scale atmospheric circulation. Here we investigate how the antecedent land–atmosphere coupling over the area south of Lake Baikal (ASLB) influences the drought events occurring over its downstream region [i.e., Northeast China (NEC)] by using the Weather Research and Forecasting (WRF) Model and a linear baroclinic model (LBM). When the ASLB region is artificially forced to be wet in the WRF simulations during March–May, the surface sensible heating is weakened and results in a cooling anomaly in low level atmosphere during May–July. Consequently, the anticyclonic circulation anomalies over ASLB and NEC are weakened, and the severity of NEC drought during May–July cannot be captured due to the upstream wetting in March–May. In the LBM experiments, idealized atmospheric heating anomaly that mimics the diabatic heating associated with surface wetness is imposed over ASLB, and the quasi-steady response pattern of 500-hPa geopotential height to the upstream wetting is highly consistent with that in the WRF simulation. In addition, the lower-level heating instead of the upper-level cooling makes a major contribution to the high pressure anomaly over NEC. This study implies the critical role of modeling upstream land–atmosphere coupling in capturing downstream persistent droughts.
Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0650.s1.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).