Abstract
Super El Niño has been a research focus since the first event occurred. On the basis of observations and models, we propose that a super El Niño emerges if El Niño is an early-onset type coincident with the distribution of an Atlantic Niña (AN) in summer and a positive Indian Ocean dipole (IOD) in autumn, conditions referred to as the Indo-Atlantic Booster (IAB). The underlying physical mechanisms refer to three-ocean interactions with seasonality. Early onset endows super El Niño with adequate strength in summer to excite wind-driven responses over the Indian and Atlantic Oceans, which further facilitate IAB formation by coupling with the seasonal cycle. In return, IAB alternately produces additional zonal winds U over the Pacific Ocean, augmenting super El Niño via the Bjerknes feedback. Adding AN and IOD indices into the regression model of U leads to a better performance than the single Niño-3.4 model, with a rise in the total explained variances by 10%–20% and a reduction in the misestimations of super El Niños by 50%. Extended analyses using Coupled Model Intercomparison Project models further confirm the sufficiency and necessity of early onset and IAB on super El Niño formation. Approximately 70% of super El Niños are early-onset types accompanied by IAB and 60% of early-onset El Niños with IAB finally grow into extreme events. These results highlight the super El Niño as an outcome of pantropical interactions, so including both the Indian and Atlantic Oceans and their teleconnections with the Pacific Ocean will greatly improve super El Niño prediction.
Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0710.s1.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).