Joint Boost to Super El Niño from the Indian and Atlantic Oceans

Jia-Zhen Wang aState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jia-Zhen Wang in
Current site
Google Scholar
PubMed
Close
and
Chunzai Wang aState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
dInnovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Chunzai Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Super El Niño has been a research focus since the first event occurred. On the basis of observations and models, we propose that a super El Niño emerges if El Niño is an early-onset type coincident with the distribution of an Atlantic Niña (AN) in summer and a positive Indian Ocean dipole (IOD) in autumn, conditions referred to as the Indo-Atlantic Booster (IAB). The underlying physical mechanisms refer to three-ocean interactions with seasonality. Early onset endows super El Niño with adequate strength in summer to excite wind-driven responses over the Indian and Atlantic Oceans, which further facilitate IAB formation by coupling with the seasonal cycle. In return, IAB alternately produces additional zonal winds U over the Pacific Ocean, augmenting super El Niño via the Bjerknes feedback. Adding AN and IOD indices into the regression model of U leads to a better performance than the single Niño-3.4 model, with a rise in the total explained variances by 10%–20% and a reduction in the misestimations of super El Niños by 50%. Extended analyses using Coupled Model Intercomparison Project models further confirm the sufficiency and necessity of early onset and IAB on super El Niño formation. Approximately 70% of super El Niños are early-onset types accompanied by IAB and 60% of early-onset El Niños with IAB finally grow into extreme events. These results highlight the super El Niño as an outcome of pantropical interactions, so including both the Indian and Atlantic Oceans and their teleconnections with the Pacific Ocean will greatly improve super El Niño prediction.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0710.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chunzai Wang, cwang@scsio.ac.cn

Abstract

Super El Niño has been a research focus since the first event occurred. On the basis of observations and models, we propose that a super El Niño emerges if El Niño is an early-onset type coincident with the distribution of an Atlantic Niña (AN) in summer and a positive Indian Ocean dipole (IOD) in autumn, conditions referred to as the Indo-Atlantic Booster (IAB). The underlying physical mechanisms refer to three-ocean interactions with seasonality. Early onset endows super El Niño with adequate strength in summer to excite wind-driven responses over the Indian and Atlantic Oceans, which further facilitate IAB formation by coupling with the seasonal cycle. In return, IAB alternately produces additional zonal winds U over the Pacific Ocean, augmenting super El Niño via the Bjerknes feedback. Adding AN and IOD indices into the regression model of U leads to a better performance than the single Niño-3.4 model, with a rise in the total explained variances by 10%–20% and a reduction in the misestimations of super El Niños by 50%. Extended analyses using Coupled Model Intercomparison Project models further confirm the sufficiency and necessity of early onset and IAB on super El Niño formation. Approximately 70% of super El Niños are early-onset types accompanied by IAB and 60% of early-onset El Niños with IAB finally grow into extreme events. These results highlight the super El Niño as an outcome of pantropical interactions, so including both the Indian and Atlantic Oceans and their teleconnections with the Pacific Ocean will greatly improve super El Niño prediction.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0710.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chunzai Wang, cwang@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 6.02 MB)
Save
  • Abram, N. J., M. K. Gagan, J. E. Cole, W. S. Hantoro, and M. Mudelsee, 2008: Recent intensification of tropical climate variability in the Indian Ocean. Nat. Geosci., 1, 849853, https://doi.org/10.1038/ngeo357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: Increased frequency of extreme La Niña events under greenhouse warming. Nat. Climate Change, 5, 132137, https://doi.org/10.1038/nclimate2492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, S. K. Behera, and T. Doi, 2016: Distinctive precursory air–sea signals between regular and super El Niños. Adv. Atmos. Sci., 33, 9961004, https://doi.org/10.1007/s00376-016-5250-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, B., and K. Takahashi, 2019: Extreme El Niño events. Tropical Extremes, V. Venugopal et al., Eds., Elsevier, 165–201.

    • Crossref
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., Q. Liu, C. Wang, and F. Guo, 2017: Indian Ocean dipole modes associated with different types of ENSO development. J. Climate, 30, 22332249, https://doi.org/10.1175/JCLI-D-16-0426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, https://doi.org/10.1029/2010GL044444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glantz, M. H., 2001: Currents of Change: Impacts of El Niño and La Niña on Climate and Society. Cambridge University Press, 266 pp.

  • Godfrey, J. S., 1975: On ocean spindown. I: A linear experiment. J. Phys. Oceanogr., 5, 399409, https://doi.org/10.1175/1520-0485(1975)005<0399:OOSIAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, F., Q. Liu, J. Yang, and L. Fan, 2018: Three types of Indian Ocean Basin modes. Climate Dyn., 51, 43574370, https://doi.org/10.1007/s00382-017-3676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpern, D., 1996: Visiting TOGA’s past. Bull. Amer. Meteor. Soc., 77, 233242, https://doi.org/10.1175/1520-0477(1996)077<0233:VTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013a: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 40124017, https://doi.org/10.1002/grl.50729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013b: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1987: Monthly mean island surface winds in the central tropical Pacific and El Niño events. Mon. Wea. Rev., 115, 31333145, https://doi.org/10.1175/1520-0493(1987)115<3133:MMISWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, L.-C., LinHo, and F.-F. Jin, 2014: A Southern Hemisphere booster of super El Niño. Geophys. Res. Lett., 41, 21422149, https://doi.org/10.1002/2014GL059370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., and K. Hanawa, 2004: A relationship between timing of El Niño onset and subsequent evolution. Geophys. Res. Lett., 31, L06304, https://doi.org/10.1029/2003GL019239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J. Appl. Meteor., 33, 757765, https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550567, https://doi.org/10.1175/2008JCLI2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., and Coauthors, 2019: Weakening Atlantic Niño–Pacific connection under greenhouse warming. Sci. Adv., 5, eaax4111, https://doi.org/10.1126/sciadv.aax4111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., H. Ding, and M. Latif, 2013: Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys. Res. Lett., 40, 22782283, https://doi.org/10.1002/grl.50362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W., and W. Cai, 2014: The importance of the eastward zonal current for generating extreme El Niño. Climate Dyn., 42, 30053014, https://doi.org/10.1007/s00382-013-1792-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W., W. Cai, and J.-S. Kug, 2015: Migration of atmospheric convection coupled with ocean currents pushes El Niño to extremes. Geophys. Res. Lett., 42, 35833590, https://doi.org/10.1002/2015GL063886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise–extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marjani, S., O. Alizadeh-Choobari, and P. Irannejad, 2019: Frequency of extreme El Niño and La Niña events under global warming. Climate Dyn., 53, 57995813, https://doi.org/10.1007/s00382-019-04902-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., A. Timmermann, M. J. Widlansky, M. A. Balmaseda, and T. N. Stockdale, 2015: The curious case of the El Niño that never happened: A perspective from 40 years of progress in climate research and forecasting. Bull. Amer. Meteor. Soc., 96, 16471665, https://doi.org/10.1175/BAMS-D-14-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münnich, M., and J. D. Neelin, 2005: Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys. Res. Lett., 32, L21709, https://doi.org/10.1029/2005GL023900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, Y. Morioka, T. Doi, B. Taguchi, and S. Behera, 2017: Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dyn., 48, 36153629, https://doi.org/10.1007/s00382-016-3289-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., D. Jin, and V. Thilakan, 2018: A model for super El Niños. Nat. Commun., 9, 2528, https://doi.org/10.1038/s41467-018-04803-7.

  • Santoso, A., and Coauthors, 2013: Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 504, 126130, https://doi.org/10.1038/nature12683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 16271645, https://doi.org/10.1007/s00382-015-2665-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F.-F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152165, https://doi.org/10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-I. An, 2005: A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys. Res. Lett., 32, L15710, https://doi.org/10.1029/2005GL022709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2019: Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA, 116, 22 51222 517, https://doi.org/10.1073/pnas.1911130116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2006: An overlooked feature of tropical climate: Inter-Pacific-Atlantic variability. Geophys. Res. Lett., 33, L12702, https://doi.org/10.1029/2006GL026324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, https://doi.org/10.1175/JCLI-D-12-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., W. Cai, and A. Santoso, 2020: Stronger increase in the frequency of extreme convective than extreme warm El Niño events under greenhouse warming. J. Climate, 33, 675690, https://doi.org/10.1175/JCLI-D-19-0376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, https://doi.org/10.1007/s00382-013-1711-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., J. Xu, C. Liu, and N. Ou, 2020: Distinguishing characteristics of spring and summer onset El Niño events. J. Climate, 33, 45794597, https://doi.org/10.1175/JCLI-D-19-0605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and J. C. L. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. J. Climate, 14, 418433, https://doi.org/10.1175/1520-0442(2001)014<0418:TROTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., and T. Yamagata, 2014: California Niño/Niña. Sci. Rep., 4, 4801, https://doi.org/10.1038/srep04801.

  • Yuan, Y., and C. Li, 2008: Decadal variability of the IOD–ENSO relationship. Chin. Sci. Bull., 53, 17451752, https://doi.org/10.1007/s11434-008-0196-6.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Wang, F.-F. Jin, M. F. Stuecker, and A. G. Turner, 2015: Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett., 42, 85708576, https://doi.org/10.1002/2015GL065703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, Y. Du, L. Liu, G. Huang, and Q. Liu, 2013: Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Climate, 26, 60676080, https://doi.org/10.1175/JCLI-D-12-00638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 657 0 0
Full Text Views 2424 1004 28
PDF Downloads 1763 375 15