Analysis of the Atmospheric Water Cycle for the Laurentian Great Lakes Region Using CMIP6 Models

Samar Minallah aDepartment of Climate and Space Sciences and Engineering, University of Michigan Ann Arbor, Ann Arbor, Michigan

Search for other papers by Samar Minallah in
Current site
Google Scholar
PubMed
Close
and
Allison L. Steiner aDepartment of Climate and Space Sciences and Engineering, University of Michigan Ann Arbor, Ann Arbor, Michigan

Search for other papers by Allison L. Steiner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). While the models have unique seasonal characteristics in the historical (1981–2010) simulations, common patterns emerge in the midcentury SSP2–4.5 scenario (2041–70), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter and spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. The precipitation recycling ratio is also projected to decline in summer and increase in winter by midcentury, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Most models (10/15) either do not represent the Great Lakes or have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, the contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In the future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0751.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samar Minallah, minallah@umich.edu

Abstract

This study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). While the models have unique seasonal characteristics in the historical (1981–2010) simulations, common patterns emerge in the midcentury SSP2–4.5 scenario (2041–70), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter and spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. The precipitation recycling ratio is also projected to decline in summer and increase in winter by midcentury, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Most models (10/15) either do not represent the Great Lakes or have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, the contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In the future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0751.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samar Minallah, minallah@umich.edu

Supplementary Materials

    • Supplemental Materials (PDF 1004.44 KB)
Save
  • Adrian, R., and Coauthors, 2009: Lakes as sentinels of climate change. Limnol. Oceanogr., 54, 22832297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aloysius, N. R., J. Sheffield, J. E. Saiers, H. B. Li, and E. F. Wood, 2016: Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J. Geophys. Res. Atmos., 121, 130152, https://doi.org/10.1002/2015JD023656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J., and S. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J., and S. Colman, 2008: A century of temperature variability in Lake Superior. Limnol. Oceanogr., 53, 27242730, https://doi.org/10.4319/lo.2008.53.6.2724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baijnath-Rodino, J. A., C. R. Duguay, and E. LeDrew, 2018: Climatological trends of snowfall over the Laurentian Great Lakes Basin. Int. J. Climatol., 38, 39423962, https://doi.org/10.1002/joc.5546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basile, S. J., S. A. Rauscher, and A. L. Steiner, 2017: Projected precipitation changes within the Great Lakes and western Lake Erie Basin: A multi-model analysis of intensity and seasonality. Int. J. Climatol., 37, 48644879, https://doi.org/10.1002/joc.5128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D. H., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust Meteor. Ocean, 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, A. M., A. L. Steiner, and D. J. Posselt, 2015: Regional modeling of surface–atmosphere interactions and their impact on Great Lakes hydroclimate. J. Geophys. Res. Atmos., 120, 10441064, https://doi.org/10.1002/2014JD022316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byun, K., and A. F. Hamlet, 2018: Projected changes in future climate over the Midwest and Great Lakes region using downscaled CMIP5 ensembles. Int. J. Climatol., 38, e531e553, https://doi.org/10.1002/joc.5388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geosci. Model Dev., 11, 29752993, https://doi.org/10.5194/gmd-11-2975-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dagan, G., P. Stier, and D. Watson-Parris, 2019: Analysis of the atmospheric water budget for elucidating the spatial scale of precipitation changes under climate change. Geophys. Res. Lett., 46, 10 50410 511, https://doi.org/10.1029/2019GL084173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demory, M. E., P. L. Vidale, M. J. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, https://doi.org/10.1007/s00382-013-1924-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X. Z. Liang, and M. F. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, https://doi.org/10.1175/JCLI3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1996: Precipitation recycling. Rev. Geophys., 34, 367378, https://doi.org/10.1029/96RG01927.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016a: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2016b: Towards improved and more routine Earth system model evaluation in CMIP. Earth Syst. Dyn., 7, 813830, https://doi.org/10.5194/esd-7-813-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichot, C. G., K. Matsumoto, B. Holt, M. M. Gierach, and K. S. Tokos, 2019: Assessing change in the overturning behavior of the Laurentian Great Lakes using remotely sensed lake surface water temperatures. Remote Sens. Environ., 235, 111427, https://doi.org/10.1016/j.rse.2019.111427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, https://doi.org/10.1007/s00382-014-2242-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos., 122, 27142733, https://doi.org/10.1002/2016JD025896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GLISA, 2020: Evaluation of lakes in climate models. Great Lakes Integrated Sciences and Assessments, https://glisa.umich.edu/sustained-assessment/climate-models/.

  • Grose, M. R., and Coauthors, 2020: Insights from CMIP6 for Australia’s future climate. Earth’s Future, 8, e2019EF001469, https://doi.org/10.1029/2019EF001469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanrahan, J. L., S. V. Kravtsov, and P. J. Roebber, 2010: Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophys. Res. Lett., 37, L01701 , https://doi.org/10.1029/2009GL041707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, and A. Hamada, 2016: Reproducibility of summer precipitation over northern Eurasia in CMIP5 multiclimate models. J. Climate, 29, 33173337, https://doi.org/10.1175/JCLI-D-15-0480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, X. Zhang, J. Sillmann, and M. Sandstad, 2020: Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Wea. Climate Extrem., 29, 100269, https://doi.org/10.1016/j.wace.2020.100269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., N. Sugiyama, and P. Roebber, 2018: Role of nonlinear dynamics in accelerated warming of great lakes. Advances in Nonlinear Geosciences, A. Tsonis, Ed., Springer, 279–295.

    • Crossref
    • Export Citation
  • Kusunoki, S., T. Ose, and M. Hosaka, 2020: Emergence of unprecedented climate change in projected future precipitation. Sci. Rep., 10, 4802, https://doi.org/10.1038/s41598-020-61792-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, https://doi.org/10.1175/JCLI-D-13-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382390, https://doi.org/10.1016/j.jhydrol.2014.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Law, R. M., and Coauthors, 2017: The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1)—Part I: Model description and pre-industrial simulation. Geosci. Model Dev., 10, 25672590, https://doi.org/10.5194/gmd-10-2567-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Moigne, P., J. Colin, and B. Decharme, 2016: Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model. Tellus, 68A, 31274, https://doi.org/10.3402/tellusa.v68.31274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levang, S. J., and R. W. Schmitt, 2015: Centennial changes of the global water cycle in CMIP5 models. J. Climate, 28, 64896502, https://doi.org/10.1175/JCLI-D-15-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lurton, T., and Coauthors, 2020: Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. J. Adv. Model. Earth Syst., 12, e2019MS001940, https://doi.org/10.1029/2019MS001940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mailhot, E., B. Music, D. F. Nadeau, A. Frigon, and R. Turcotte, 2019: Assessment of the Laurentian Great Lakes’ hydrological conditions in a changing climate. Climatic Change, 157, 243259, https://doi.org/10.1007/s10584-019-02530-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., M. Menegoz, M. Acosta, X. Yepes-Arbos, E. Exarchou, and F. J. Doblas-Reyes, 2020: Replicability of the EC-Earth3 Earth system model under a change in computing environment. Geosci. Model Dev., 13, 11651178, https://doi.org/10.5194/gmd-13-1165-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, https://doi.org/10.1002/2013JD021152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minallah, S., and A. L. Steiner, 2021: Role of the atmospheric moisture budget in defining the precipitation seasonality of the Great Lakes region. J. Climate, 34, 643657, https://doi.org/10.1175/JCLI-D-19-0952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst., 10, 13831413, https://doi.org/10.1029/2017MS001217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Na, Y., Q. Fu, and C. Kodama, 2020: Precipitation probability and its future changes from a global cloud-resolving model and CMIP6 simulations. J. Geophys. Res. Atmos., 125, e2019JD031926, https://doi.org/10.1029/2019JD031926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, https://doi.org/10.1175/JCLI-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., V. Bennington, and S. Vavrus, 2015: Dynamically downscaled projections of lake-effect snow in the Great Lakes basin. J. Climate, 28, 16611684, https://doi.org/10.1175/JCLI-D-14-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change, 42, 169180, https://doi.org/10.1016/j.gloenvcha.2015.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piccolroaz, S., M. Toffolon, and B. Majone, 2015: The role of stratification on lakes’ thermal response: The case of Lake Superior. Water Resour. Res., 51, 78787894, https://doi.org/10.1002/2014WR016555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. W., and F. A. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845863, https://doi.org/10.1016/S0380-1330(96)71006-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seland, Ø., and Coauthors, 2020: The Norwegian Earth System Model, NorESM2—Evaluation of theCMIP6 DECK and historical simulations. Geosci. Model Dev., 13, 61656200, https://doi.org/10.5194/gmd-13-6165-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Q., and P. Xue, 2019: Impact of lake surface temperature variations on lake effect snow over the Great Lakes region. J. Geophys. Res. Atmos., 124, 12 55312 567, https://doi.org/10.1029/2019JD031261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smits, A. P., S. MacIntyre, and S. Sadro, 2020: Snowpack determines relative importance of climate factors driving summer lake warming. Limnol. Oceanogr. Lett., 5, 271279, https://doi.org/10.1002/lol2.10147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, C., P. D. Blanken, J. D. Lenters, and N. Hedstrom, 2013: The importance of spring and autumn atmospheric conditions for the evaporation regime of Lake Superior. J. Hydrometeor., 14, 16471658, https://doi.org/10.1175/JHM-D-12-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, A., R. Grotjahn, and P. A. Ullrich, 2020: Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Wea. Climate Extremes, 29, 100268, https://doi.org/10.1016/j.wace.2020.100268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, N., S. Kravtsov, and P. Roebber, 2018: Multiple climate regimes in an idealized lake-ice-atmosphere model. Climate Dyn., 50, 655676, https://doi.org/10.1007/s00382-017-3633-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffolon, M., S. Piccolroaz, and E. Calamita, 2020: On the use of averaged indicators to assess lakes’ thermal response to changes in climatic conditions. Environ. Res. Lett., 15, 034060, https://doi.org/10.1088/1748-9326/ab763e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694, https://doi.org/10.1023/A:1005319109110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Cleave, K., J. D. Lenters, J. Wang, and E. M. Verhamme, 2014: A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998. Limnol. Oceanogr., 59, 18891898, https://doi.org/10.4319/lo.2014.59.6.1889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., and Coauthors, 2018: Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Climate Dyn., 52, 68176846, https://doi.org/10.1007/s00382-018-4547-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and Coauthors, 2017: Simulation of the present-day climate with the climate model INMCM5. Climate Dyn., 49, 37153734, https://doi.org/10.1007/s00382-017-3539-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. B., P. Steinle, A. Seed, and Y. Xiao, 2016: The sensitivity of heavy precipitation to horizontal resolution, domain size, and rain rate assimilation: Case studies with a convection-permitting model. Adv. Meteor., 2016, 7943845, https://doi.org/10.1155/2016/7943845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. Q., G. Huang, B. W. Baetz, and S. Zhao, 2016: Probabilistic projections of regional climatic changes over the Great Lakes Basin. Climate Dyn., 49, 22372247, https://doi.org/10.1007/s00382-016-3450-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetzel, R. G., and G. E. Likens, 2000: The heat budget of lakes. Limnological Analyses, 3rd ed. Springer, 45–56.

    • Crossref
    • Export Citation
  • Woolway, R. I., E. Jennings, and L. Carrea, 2020: Impact of the 2018 European heatwave on lake surface water temperature. Inland Waters, 10, 322332, https://doi.org/10.1080/20442041.2020.1712180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Working Group on Coupled Modelling, 2015: Overview of CMIP6-endorsed MIPs. WGCM, 280 pp., https://www.wcrp-climate.org/images/modelling/WGCM/CMIP/CMIP6-EndorsedMIPs_Summary_150819_Sent.pdf.

  • Wu, T., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931965, https://doi.org/10.2151/jmsj.2019-051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangvil, A., D. H. Portis, and P. J. Lamb, 2004: Investigation of the large-scale atmospheric moisture field over the Midwestern United States in relation to summer precipitation. Part II: Recycling of local evapotranspiration and association with soil moisture and crop yields. J. Climate, 17, 32833301, https://doi.org/10.1175/1520-0442(2004)017<3283:IOTLAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y. F., M. Notaro, S. J. Vavrus, and M. J. Foster, 2016: Recent accelerated warming of the Laurentian Great Lakes: Physical drivers. Limnol. Oceanogr., 61, 17621786, https://doi.org/10.1002/lno.10331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y. F., M. Notaro, and S. J. Vavrus, 2019: Spatially variable warming of the Laurentian Great Lakes: An interaction of bathymetry and climate. Climate Dyn., 52, 58335848, https://doi.org/10.1007/s00382-018-4481-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview. Earth Planet. Phys., 2, 276291, https://doi.org/10.26464/epp2018026.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 432 0 0
Full Text Views 1453 749 63
PDF Downloads 811 195 37