• Bowden, J. H., and et al. , 2020: High-resolution dynamically downscaled rainfall and temperature projections for ecological life zones within Puerto Rico and for the U.S. Virgin Islands. Int. J. Climatol., 41, 13051327, https://doi.org/10.1002/joc.6810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D21104, https://doi.org/10.1029/2005JD005763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., and et al. , 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geosci. Model Dev., 11, 29752993, https://doi.org/10.5194/gmd-11-2975-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., T. Iwasaki, H. Qin, and W. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 55175537, https://doi.org/10.1175/JCLI-D-14-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., R. Lan, W. Zeng, H. Pan, and W. Li, 2018: Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J. Climate, 31, 17031724, https://doi.org/10.1175/JCLI-D-17-0373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, C. C., L. H. Hsu, T. J. Lee, and Y. C. Yu, 2019: Meteorological analysis of heavy rain events in Taoyuan and Taipei on July 2, 2019 (in Chinese). National Science and Technology Center for Disaster Reduction Newsletter, 16 pp., https://www.ncdr.nat.gov.tw/Files/NewsLetter/New/20190813100513.pdf.

  • Chou, C., C. A. Chen, P. H. Tan, and T. K. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate, 25, 32913306, https://doi.org/10.1175/JCLI-D-11-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, J. C., and K. P. Bowman, 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res., 109, D17105, https://doi.org/10.1029/2004JD004818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., P. J. Gleckler, C. Doutriaux, D. N. Williams, A. Dai, J. Fasullo, K. Trenberth, and A. Berg, 2016: Metrics for the diurnal cycle of precipitation: Toward routine benchmarks for climate models. J. Climate, 29, 44614471, https://doi.org/10.1175/JCLI-D-15-0664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dix, M., and et al. , 2019: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP historical, version 20191213. Earth System Grid Federation, accessed 13 December 2019, https://doi.org/10.22033/ESGF/CMIP6.4271.

    • Crossref
    • Export Citation
  • EC-Earth, 2019a: EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP historical, version 20191213. Earth System Grid Federation, accessed 13 December 2019, https://doi.org/10.22033/ESGF/CMIP6.4700.

    • Crossref
    • Export Citation
  • EC-Earth, 2019b: EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP historical, version 20191213. Earth System Grid Federation, accessed 13 December 2019,https://doi.org/10.22033/ESGF/CMIP6.4706.

    • Crossref
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., Z. Lin, and D. Guo, 2020: Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmos. Oceanic Sci. Lett., 13, 550558, https://doi.org/10.1080/16742834.2020.1746175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gusain, A., S. Ghosh, and S. Karmakar, 2020: Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res., 232, 104680, https://doi.org/10.1016/j.atmosres.2019.104680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, M., R. Oki, S. Shimizu, M. Kachi, and T. Higashiuwatoko, 2008: Fine-scale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteor. Climatol., 47, 544561, https://doi.org/10.1175/2007JAMC1559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. R., and S. Y. Wang, 2014: Impact of land-sea breezes at different scales on the diurnal rainfall in Taiwan. Climate Dyn., 43, 19511963, https://doi.org/10.1007/s00382-013-2018-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. R., and K. C. Chen, 2015: Trends in pre-summer frontal and diurnal rainfall activities during 1982–2012 over Taiwan and southeast China: Characteristics and possible causes. Int. J. Climatol., 35, 26082619, https://doi.org/10.1002/joc.4159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. R., and S. Y. Wang, 2017: Future changes in propagating and non-propagating diurnal rainfall over East Asia. Climate Dyn., 49, 375389, https://doi.org/10.1007/s00382-016-3348-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. R., Y. H. Chang, H. H. Hsu, C. T. Cheng, and C. Y. Tu, 2016a: Summer convective afternoon rainfall simulation and projection using WRF driven by global climate model. Part II: Over South China and Luzon. Terr. Atmos. Oceanic Sci., 27, 673685, https://doi.org/10.3319/TAO.2016.05.02.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. R., Y. H. Chang, H. H. Hsu, C. T. Cheng, and C. Y. Tu, 2016b: Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events. J. Geophys. Res. Atmos., 121, 13 97313 988, https://doi.org/10.1002/2016JD025643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. R., Y. H. Chang, and P. H. Huang, 2019: Relationship between the interannual variations of summer convective afternoon rainfall activity in Taiwan and SSTA(Niño3.4) during 1961–2012: Characteristics and mechanisms. Sci. Rep., 9, 9378, https://doi.org/10.1038/s41598-019-45901-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. R., P. Y. Liu, Y. H. Chang, and C. Y. Liu, 2020: Evaluation and application of satellite precipitation products in studying the summer precipitation variations over Taiwan. Remote Sens., 12, 347, https://doi.org/10.3390/rs12030347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, E. F. Stocker, and J. Tan, 2019: V06 IMERG release notes. GPM Project Doc., 6 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_V06_release_notes_190503.pdf.

  • Kamworapan, S., and C. Surussavadee, 2019: Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv. Meteor., 2019, 1067365, https://doi.org/10.1155/2019/1067365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E., D. Rowell, and R. Jones, 2010: Mechanisms and reliability of future projected changes in daily precipitation. Climate Dyn., 35, 489509, https://doi.org/10.1007/s00382-009-0639-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., M. Lee, D. Cha, and W. M. Putman, 2019: Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10 km horizontal resolution. Climate Dyn., 53, 65236542, https://doi.org/10.1007/s00382-019-04943-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and O. Arakawa, 2015: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Climate, 28, 56015621, https://doi.org/10.1175/JCLI-D-14-00585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and et al. , 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951957, https://doi.org/10.1175/1520-0477-76.6.951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and et al. , 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst., 10, 13831413, https://doi.org/10.1029/2017MS001217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A. T., K. Oouchi, M. Satoh, and H. Tomita, 2012: Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization. J. Climate, 25, 51195134, https://doi.org/10.1175/JCLI-D-11-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., and P. E. Kirstetter, 2018: Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Quart. J. Roy. Meteor. Soc., 144, 270281, https://doi.org/10.1002/qj.3218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, S. G., and M. S. Suh, 2018: Changes in seasonal and diurnal precipitation types during summer over South Korea in the late twenty-first century (2081–2100) projected by the RegCM4.0 based on four RCP scenarios. Climate Dyn., 51, 30413060, https://doi.org/10.1007/s00382-017-4063-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley Dellaripa, E. M., E. D. Maloney, B. A. Toms, S. M. Saleeby, and S. C. van den Heever, 2020: Topographic effects on the Luzon diurnal cycle during the BSISO. J. Atmos. Sci., 77, 330, https://doi.org/10.1175/JAS-D-19-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, https://doi.org/10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, https://doi.org/10.1175/2009JCLI2890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Y. Kitao, 2013: Numerical examination of the diurnal variation of summer precipitation over southern China. SOLA, 9, 129133, https://doi.org/10.2151/sola.2013-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semmler, T., and et al. , 2018: AWI AWI-CM1.1MR model output prepared for CMIP6 CMIP, version 20191219. Earth System Grid Federation, accessed 19 December 2019, https://doi.org/10.22033/ESGF/CMIP6.359.

    • Crossref
    • Export Citation
  • Sorooshian, S., X. Gao, K. Hsu, R. A. Maddox, Y. Hong, H. V. Gupta, and B. Imam, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15, 9831001, https://doi.org/10.1175/1520-0442(2002)015<0983:DVOTRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, D. A., and A. J. Weaver, 2003: Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Climate Dyn., 20, 435445, https://doi.org/10.1007/s00382-002-0288-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and et al. , 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Wang, S. Y., and T. C. Chen, 2008: Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J. Appl. Meteor. Climatol., 47, 20682080, https://doi.org/10.1175/2007JAMC1821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and et al. , 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyser, K., T. van Noije, S. Yang, J. von Hardenberg, D. O’Donnell, and R. Döscher, 2020: On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6. Geosci. Model Dev., 13, 34653474, https://doi.org/10.5194/gmd-13-3465-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., T. Wu, J. Zhang, J. Yao, and Y. Fang, 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol., 40, 64236440, https://doi.org/10.1002/joc.6590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., F. A. Furuzawa, A. Higuchi, and K. Nakamura, 2008: Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS. J. Climate, 21, 40114028, https://doi.org/10.1175/2007JCLI2079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, https://doi.org/10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., R. Yu, M. Zhang, W. Lin, H. Chen, and J. Li, 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 33073320, https://doi.org/10.1175/JCLI-D-11-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., R. Yu, M. Zhang, W. Lin, J. Li, and Y. Fu, 2013: Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J. Climate, 26, 31593172, https://doi.org/10.1175/JCLI-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and et al. , 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931965, https://doi.org/10.2151/jmsj.2019-051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. X., X. Q. Bi, and X. H. Kong, 2015: Observed diurnal cycle of summer precipitation over South Asia and East Asia based on CMORPH and TRMM satellite data. Atmos. Oceanic Sci. Lett., 8, 201207, https://doi.org/10.1080/16742834.2015.11447260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S. X., 2020: Diurnal variation of the duration and environment for heavy rainfall during the warm season in South China. Atmos. Sci. Lett., 21, e969, https://doi.org/10.1002/asl.969.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 286 286 55
Full Text Views 84 84 5
PDF Downloads 114 114 9

Simulation and Projection of Summer Convective Afternoon Rainfall Activities over Southeast Asia in CMIP6 Models

View More View Less
  • 1 a Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
  • | 2 b College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Convective afternoon rainfall (CAR) events, which tend to generate a local rainfall typically in the afternoon, are among the most frequently observed local weather patterns over Southeast Asia during summer. Using satellite precipitation estimations as an observational base for model evaluation, this study examines the applicability of 10 global climate models provided by phase 6 of the Coupled Model Intercomparison Project (CMIP6) in simulating the CAR activities over Southeast Asia. Analyses also focus on exploring the characteristics and maintenance mechanisms of related projections of CAR activities in the future. Our analyses of the historical simulation indicate that EC-Earth3 and EC-Earth3-Veg are the two best models for simulating CAR activities (including amount, frequency, and intensity) over Southeast Asia. Analyses also demonstrate that EC-Earth3 and EC-Earth3-Veg outperform their earlier version (i.e., EC-Earth) in CMIP5 owing to the improvement in its spatial resolution in CMIP6. For future projections, our examinations of the differences in CAR activities between the future (2071–2100, under the SSP858 run) and the present (1985–2014, under the historical run) indicate that CAR events will become fewer but more intense over most land areas of Southeast Asia. Possible causes of the projected increase (decrease) in CAR intensity (frequency) are attributed to the projected increase (decrease) in the local atmospheric humidity (sea breeze convergence and daytime thermal instability). These findings provide insight into how the local weather/climate over Southeast Asia is likely to change under global warming.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0788.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wan-Ru Huang, wrhuang@ntnu.edu.tw

Abstract

Convective afternoon rainfall (CAR) events, which tend to generate a local rainfall typically in the afternoon, are among the most frequently observed local weather patterns over Southeast Asia during summer. Using satellite precipitation estimations as an observational base for model evaluation, this study examines the applicability of 10 global climate models provided by phase 6 of the Coupled Model Intercomparison Project (CMIP6) in simulating the CAR activities over Southeast Asia. Analyses also focus on exploring the characteristics and maintenance mechanisms of related projections of CAR activities in the future. Our analyses of the historical simulation indicate that EC-Earth3 and EC-Earth3-Veg are the two best models for simulating CAR activities (including amount, frequency, and intensity) over Southeast Asia. Analyses also demonstrate that EC-Earth3 and EC-Earth3-Veg outperform their earlier version (i.e., EC-Earth) in CMIP5 owing to the improvement in its spatial resolution in CMIP6. For future projections, our examinations of the differences in CAR activities between the future (2071–2100, under the SSP858 run) and the present (1985–2014, under the historical run) indicate that CAR events will become fewer but more intense over most land areas of Southeast Asia. Possible causes of the projected increase (decrease) in CAR intensity (frequency) are attributed to the projected increase (decrease) in the local atmospheric humidity (sea breeze convergence and daytime thermal instability). These findings provide insight into how the local weather/climate over Southeast Asia is likely to change under global warming.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0788.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wan-Ru Huang, wrhuang@ntnu.edu.tw

Supplementary Materials

    • Supplemental Materials (PDF 1.29 MB)
Save