• Almazroui, M., S. Saeed, F. Saeed, M. N. Islam, and M. Ismail, 2020: Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst. Environ., 4, 297320, https://doi.org/10.1007/s41748-020-00157-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, N. P., S. A. Klein, and J. S. Boyle, 2014: On the contribution of longwave radiation to global climate model biases in Arctic lower tropospheric stability. J. Climate, 27, 72507269, https://doi.org/10.1175/JCLI-D-14-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Weakened evidence for mid-latitude impacts of Arctic warming. Nat. Climate Change, 10, 10651066, https://doi.org/10.1038/s41558-020-00954-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boeke, R. C., and P. C. Taylor, 2018: Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming. Nat. Commun., 9, 5017, https://doi.org/10.1038/s41467-018-07061-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., K. C. Armour, G. H. Roe, N. Siler, and N. Feldl, 2018: Sources of uncertainty in the meridional pattern of climate change. Geophys. Res. Lett., 45, 91319140, https://doi.org/10.1029/2018GL079429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2019: Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and Coauthors, 2020: Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett., 21, e984, https://doi.org/10.1002/asl.984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20, 609632, https://doi.org/10.1175/JCLI4026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., Z. Jiang, and L. Li, 2011: Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Climate, 24, 47414756, https://doi.org/10.1175/2011JCLI4102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davy, R., and S. Outten, 2020: The Arctic surface climate in CMIP6: Status and developments since CMIP5. J. Climate, 33, 80478068, https://doi.org/10.1175/JCLI-D-19-0990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., X. Jiang, C. Hu, and D. Chen, 2020: More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. Environ. Res. Lett., 15, 074011, https://doi.org/10.1088/1748-9326/ab8335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dodd, E. M. A., C. J. Merchant, N. A. Rayner, and C. P. Morice, 2015: An investigation into the impact of using various techniques to estimate arctic surface air temperature anomalies. J. Climate, 28, 17431763, https://doi.org/10.1175/JCLI-D-14-00250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, https://doi.org/10.1175/JCLI-D-12-00490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gidden, M. J., and Coauthors, 2019: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12, 14431475, https://doi.org/10.5194/gmd-12-1443-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., and Coauthors, 2018: Quantifying climate feedbacks in polar regions. Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., P. Cox, C. Huntingford, and S. Klein, 2019: Progressing emergent constraints on future climate change. Nat. Climate Change, 9, 269278, https://doi.org/10.1038/s41558-019-0436-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, M., J. Huang, Y. Luo, X. Chen, Y. Lin, Z. Zhao, and Y. Xu, 2018: Narrowing the surface temperature range in CMIP5 simulations over the Arctic. Theor. Appl. Climatol., 132, 10731088, https://doi.org/10.1007/s00704-017-2161-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, https://doi.org/10.1007/s00382-010-0810-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hodson, D. L. R., S. P. E. Keeley, A. West, J. Ridley, E. Hawkins, and H. T. Hewitt, 2013: Identifying uncertainties in Arctic climate change projections. Climate Dyn., 40, 28492865, https://doi.org/10.1007/s00382-012-1512-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., H. Fan, M. Cai, S. A. Sejas, P. Taylor, and S. Yang, 2020: A less cloudy picture of the inter-model spread in future global warming projections. Nat. Commun., 11, 4472, https://doi.org/10.1038/s41467-020-18227-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2017: Recently amplified Arctic warming has contributed to a continual global warming trend. Nat. Climate Change, 7, 875879, https://doi.org/10.1038/s41558-017-0009-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., T. H. Ou, D. L. Chen, Y. Luo, and Z. C. Zhao, 2019: The amplified Arctic warming in the recent decades may have been overestimated by CMIP5 models. Geophys. Res. Lett., 46, 13 33813 345, https://doi.org/10.1029/2019GL084385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jiang, Z., W. Li, J. Xu, and L. Li, 2015: Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Climate, 28, 86038619, https://doi.org/10.1175/JCLI-D-15-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., and G. Svensson, 2013: Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble. Geophys. Res. Lett., 40, 43744379, https://doi.org/10.1002/grl.50768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2008: Should we believe model predictions of future climate change? Philos. Trans. Roy. Soc., 366A, 46474664, https://doi.org/10.1098/rsta.2008.0169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., L. Brodeau, R. G. Graversen, J. Karlsson, G. Svensson, M. Tjernström, U. Willén, and K. Wyser, 2013: Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Climate Dyn., 40, 27192743, https://doi.org/10.1007/s00382-012-1505-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landrum, L., and M. M. Holland, 2020: Extremes become routine in an emerging new Arctic. Nat. Climate Change, 10, 11081115, https://doi.org/10.1038/s41558-020-0892-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, N. Maher, J. Marotzke, E. M. Fischer, L. Brunner, R. Knutti, and E. Hawkins, 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn., 11, 491508, https://doi.org/10.5194/esd-11-491-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, 63076326, https://doi.org/10.1029/2018JD029522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levang, S. J., and R. W. Schmitt, 2020: What causes the AMOC to weaken in CMIP5? J. Climate, 33, 15351545, https://doi.org/10.1175/JCLI-D-19-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Zhang, Y. Hu, L. Chen, Y. Dai, and X. Ren, 2008: Assessment of surface air temperature over the Arctic Ocean in reanalysis and IPCC AR4 model simulations with IABP/POLES observations. J. Geophys. Res., 113, D10105, https://doi.org/10.1029/2007JD009380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581, https://doi.org/10.1175/2011JCLI4002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460, https://doi.org/10.1175/2010JCLI3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116, 92399244, https://doi.org/10.1073/pnas.1904242116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and Coauthors, 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749.

  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, N. A. Bond, J. E. Walsh, V. M. Kattsov, and W. L. Chapman, 2011: Considerations in the selection of global climate models for regional climate projections: The Arctic as a case study. J. Climate, 24, 15831597, https://doi.org/10.1175/2010JCLI3462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattyn, F., and Coauthors, 2018: The Greenland and Antarctic ice sheets under 1.5°C global warming. Nat. Climate Change, 8, 10531061, https://doi.org/10.1038/s41558-018-0305-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portnov, A., S. Vadakkepuliyambatta, J. Mienert, and A. Hubbard, 2016: Ice-sheet-driven methane storage and release in the Arctic. Nat. Commun., 7, 10314, https://doi.org/10.1038/ncomms10314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reintges, A., T. Martin, M. Latif, and N. S. Keenlyside, 2017: Uncertainty in twenty-first century projections of the Atlantic meridional overturning circulation in CMIP3 and CMIP5 models. Climate Dyn., 49, 14951511, https://doi.org/10.1007/s00382-016-3180-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter-Menge, J., and Coauthors, 2020: The Arctic [in “State of the Climate on 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S239S286, https://doi.org/10.1175/BAMS-D-20-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R. A., and Z. Hausfather, 2020: The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data, 12, 34693479, https://doi.org/10.5194/essd-12-3469-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R. A., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinfor. Geostat. An Overview, 1, 20100, https://doi.org/10.4172/2327-4581.1000103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senftleben, D., A. Lauer, and A. Karpechko, 2020: Constraining uncertainties in CMIP5 projections of September Arctic sea ice extent with observations. J. Climate, 33, 14871503, https://doi.org/10.1175/JCLI-D-19-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Q., Q. Wang, Z. Song, F. Qiao, J. Zhao, M. Chu, and X. Li, 2020: Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5. Geophys. Res. Lett., 47, e2020GL087965, https://doi.org/10.1029/2020GL087965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and feedbacks. Nat. Climate Change, 8, 10761081, https://doi.org/10.1038/s41558-018-0339-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, X., J. E. Walsh, and W. L. Chapman, 1996: An assessment of global climate model simulations of Arctic air temperatures. J. Climate, 9, 10601076, https://doi.org/10.1175/1520-0442(1996)009<1060:AAOGCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokarska, K. B., M. B. Stolpe, S. Sippel, E. M. Fischer, C. J. Smith, F. Lehner, and R. Knutti, 2020: Past warming trend constrains future warming in CMIP6 models. Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., R. M. Graham, K. Wang, S. Gerland, and M. A. Granskog, 2019: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere, 13, 16611679, https://doi.org/10.5194/tc-13-1661-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Nath, W. Chen, and T. J. Ma, 2020: CMIP5 model simulations of warm Arctic–cold Eurasia pattern in winter surface air temperature anomalies. Climate Dyn., 54, 44994513, https://doi.org/10.1007/s00382-020-05241-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, T., J. Li, X. Y. Rong, W. J. Dong, B. Y. Wu, and M. H. Ding, 2018: Arctic climate changes based on historical simulations (1900–2013) with the CAMS-CSM. J. Meteor. Res., 32, 881895, https://doi.org/10.1007/s13351-018-7188-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, F. Y., Q. L. You, Z. Y. Zhang, and L. Zhang, 2020: Changes and uncertainties of surface mean temperature over China under global warming of 1.5 and 2°C. Int. J. Climatol., 41, E410E427, https://doi.org/10.1002/JOC.6694.

    • Search Google Scholar
    • Export Citation
  • Wu, L. P., X. Y. Yang, and J. Y. Hu, 2019: Assessment of Arctic sea ice simulations in CMIP5 models using a synthetical skill scoring method. Acta Oceanol. Sin., 38, 4858, https://doi.org/10.1007/s13131-019-1474-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyser, K., E. Kjellstrom, T. Koenigk, H. Martins, and R. Doscher, 2020: Warmer climate projections in EC-Earth3-Veg: The role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ. Res. Lett., 15, 054020, https://doi.org/10.1088/1748-9326/ab81c2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y., Y. Z. Liu, and J. P. Huang, 2016: Overestimated Arctic warming and underestimated Eurasia mid-latitude warming in CMIP5 simulations. Int. J. Climatol., 36, 44754487, https://doi.org/10.1002/joc.4644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2021: Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev., 217, 103625, https://doi.org/10.1016/j.earscirev.2021.103625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and Coauthors, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 58435858, https://doi.org/10.1175/JCLI3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Zou, and X. Chen, 2019: Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Climate Change Res., 15, 445456, https://doi.org/10.12006/J.ISSN.1673-1719.2019.193.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., H. Matthes, A. Rinke, B. Huang, K. Yang, and K. Dethloff, 2019: Simulating Arctic 2-m air temperature and its linear trends using the HIRHAM5 regional climate model. Atmos. Res., 217, 137149, https://doi.org/10.1016/j.atmosres.2018.10.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1270 844 50
Full Text Views 471 322 14
PDF Downloads 546 376 10

Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai, China
  • | 2 b Innovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, China
  • | 3 c Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
  • | 4 d Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
  • | 5 e Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
  • | 6 f Atmospheric and Environmental Research Inc., Lexington, Massachusetts
  • | 7 g Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Arctic has experienced a warming rate higher than the global mean in the past decades, but previous studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near-surface mean temperatures in the Arctic are analyzed from 22 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Greenland Sea the Barents Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the multimodel ensemble mean of 22 CMIP6 models exhibits significant Arctic warming in the future and the warming rate is more than twice that of the global/Northern Hemisphere mean. Model spread is the largest contributor to the overall uncertainty in projections, which accounts for 55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095. Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5% at the end of the twenty-first century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from 2015 to 2095. It is found that the largest model uncertainties are consistent cold bias in the oceanic regions in the models, which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest that large intermodel spread and uncertainties exist in the CMIP6 models’ simulation and projection of the Arctic near-surface temperature and that there are different responses over the ocean and land in the Arctic to greenhouse gas forcing. Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land warming to reduce the spread.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Qinglong You, qlyou@fudan.edu.cn; yqingl@126.com

Abstract

The Arctic has experienced a warming rate higher than the global mean in the past decades, but previous studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near-surface mean temperatures in the Arctic are analyzed from 22 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Greenland Sea the Barents Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the multimodel ensemble mean of 22 CMIP6 models exhibits significant Arctic warming in the future and the warming rate is more than twice that of the global/Northern Hemisphere mean. Model spread is the largest contributor to the overall uncertainty in projections, which accounts for 55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095. Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5% at the end of the twenty-first century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from 2015 to 2095. It is found that the largest model uncertainties are consistent cold bias in the oceanic regions in the models, which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest that large intermodel spread and uncertainties exist in the CMIP6 models’ simulation and projection of the Arctic near-surface temperature and that there are different responses over the ocean and land in the Arctic to greenhouse gas forcing. Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land warming to reduce the spread.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Qinglong You, qlyou@fudan.edu.cn; yqingl@126.com
Save