Role of the Tibetan Plateau in Northern Drought Induced by Changes in the Subtropical Westerly Jet

Qingzhe Zhu aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Qingzhe Zhu in
Current site
Google Scholar
PubMed
Close
,
Yuzhi Liu aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
bCollaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China

Search for other papers by Yuzhi Liu in
Current site
Google Scholar
PubMed
Close
,
Tianbin Shao aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Tianbin Shao in
Current site
Google Scholar
PubMed
Close
,
Run Luo aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Run Luo in
Current site
Google Scholar
PubMed
Close
, and
Ziyuan Tan aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Ziyuan Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tibetan Plateau (TP), the so-called water tower of Asia, plays an important role in the water cycle. However, few studies have linked the TP’s water vapor supply with the climate over North China. In this study, we found that changes in the subtropical westerly jet (SWJ) dynamically induce drought in North China, and the TP plays an important role in this relationship. During July–August for the period of 1981–2019, the SWJ center between 75° and 105°E obviously shifted northward at a rate of 0.04° per year. Correspondingly, the zonal winds in the southern subtropics were incredibly weakened, causing the outflow of water vapor from the TP to decrease dramatically. Combined with numerical simulations, we discovered that a reduction in water vapor transport from the TP can obviously decrease the precipitation over North China. Sensitivity experiments demonstrated that if the water vapor outflow from the eastern border of the TP decreases by 52.74%, the precipitation in North China will decrease by 12.69% due to a decrease in the local cloud fraction caused by a diminished water vapor content in the atmosphere. Therefore, although less water vapor transport occurs in the upper troposphere than in the lower troposphere, the impact of transport from the TP in the former on the downstream precipitation cannot be ignored.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuzhi Liu, liuyzh@lzu.edu.cn

Abstract

The Tibetan Plateau (TP), the so-called water tower of Asia, plays an important role in the water cycle. However, few studies have linked the TP’s water vapor supply with the climate over North China. In this study, we found that changes in the subtropical westerly jet (SWJ) dynamically induce drought in North China, and the TP plays an important role in this relationship. During July–August for the period of 1981–2019, the SWJ center between 75° and 105°E obviously shifted northward at a rate of 0.04° per year. Correspondingly, the zonal winds in the southern subtropics were incredibly weakened, causing the outflow of water vapor from the TP to decrease dramatically. Combined with numerical simulations, we discovered that a reduction in water vapor transport from the TP can obviously decrease the precipitation over North China. Sensitivity experiments demonstrated that if the water vapor outflow from the eastern border of the TP decreases by 52.74%, the precipitation in North China will decrease by 12.69% due to a decrease in the local cloud fraction caused by a diminished water vapor content in the atmosphere. Therefore, although less water vapor transport occurs in the upper troposphere than in the lower troposphere, the impact of transport from the TP in the former on the downstream precipitation cannot be ignored.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuzhi Liu, liuyzh@lzu.edu.cn
Save
  • An, Z., J. E. Kutzbach, W. L. Prell, and S. C. Porter, 2001: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411, 6266, https://doi.org/10.1038/35075035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, https://doi.org/10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 Modeling System. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. H., and W. Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118, https://doi.org/10.2151/jmsj.80.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, M., J. R. Yu, and S. T. Gao, 1999: A study on the variations of the westerly jet over East Asia and its relation with the tropical convective heating (in Chinese). Chin. J. Atmos. Sci., 23, 6270.

    • Search Google Scholar
    • Export Citation
  • Dong, M., W. M. Zhu, and X. D. Xu, 2001: Variation of surface heat flux on the Tibetan Plateau and its impact on the general circulation of atmosphere over East Asia in early summer (in Chinese). Chin. J. Appl. Meteor., 12, 458468.

    • Search Google Scholar
    • Export Citation
  • Du, Q., and Coauthors, 2020: Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: Impacts from boundary-layer mixing and anthropogenic emission. Atmos. Chem. Phys., 20, 28392863, https://doi.org/10.5194/acp-20-2839-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Li, Z. Xie, and Z. Zhu, 2016: Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies. Climate Dyn., 46, 26732688, https://doi.org/10.1007/s00382-015-2723-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A. M., and G. X. Wu, 2009: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Climate, 22, 41974212, https://doi.org/10.1175/2009JCLI2699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, H., and Coauthors, 2008: Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China. Atmos. Environ., 42, 63216334, https://doi.org/10.1016/j.atmosenv.2008.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., S. Shin, Z. Liu, and Q. Liu, 2016: Sensitivity of Asian summer monsoon precipitation to tropical sea surface temperature anomalies. Climate Dyn., 47, 25012514, https://doi.org/10.1007/s00382-016-2978-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1957: Large-scale aspects of the summer monsoon in South and East Asia. J. Meteor. Soc. Japan, 35A, 180186, https://doi.org/10.2151/jmsj1923.35A.0_180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., B. Lin, P. Minnis, T. Wang, X. Wang, Y. Hu, Y. Yi, and J. R. Ayers, 2006: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, https://doi.org/10.1029/2006GL026561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., P. Minnis, H. Yan, Y. Yi, B. Chen, L. Zhang, and K. Ayers, 2010: Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 68636872, https://doi.org/10.5194/acp-10-6863-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, https://doi.org/10.1002/2014JD021796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, R., Y. Liu, S. Hua, Q. Zhu, and T. Shao, 2018: Estimation of the aerosol radiative effect over the Tibetan Plateau based on the latest CALIPSO product. J. Meteor. Res., 32, 707722, https://doi.org/10.1007/s13351-018-8060-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1979: Tropical meteorology. Part 4, Compendium of Meteorology, Vol. 2, WMO Rep. 364, 428 pp.

  • Kuang, X. Y., and Y. C. Zhang, 2005: Seasonal variation of the East Asian subtropical westerly jet and its association with the heating field over East Asia. Adv. Atmos. Sci., 22, 831840, https://doi.org/10.1007/BF02918683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X. Y., Y. C. Zhang, and J. Liu, 2007: Seasonal variations of the East Asian subtropical westerly jet and the thermal mechanism. Acta Meteor. Sin., 2, 192203.

    • Search Google Scholar
    • Export Citation
  • Li, C. Y., Z. T. Wang, S. Z. Lin, and C. H. Ru, 2004: The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location (in Chinese). Chin. J. Atmos. Sci., 28, 641658.

    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285314, https://doi.org/10.3319/TAO.2005.16.2.285(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, Q. H., S. T. Gao, and H. J. Wang, 2004: Anomalies of the extratropical westerly jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies (in Chinese). Chin. J. Geophys., 47, 1018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, Q. H., S. Y. Tao, and H. J. Wang, 2006: Internal dynamics related to anomalies of seasonal evolution of summer circulations in East Asia during July–August. Chin. J. Geophys., 49, 2836, https://doi.org/10.1002/cjg2.808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., and R. Y. Lu, 2005: Inter-annual meridional displacement of the East Asian up-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199211, https://doi.org/10.1007/BF02918509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2011: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos. Chem. Phys., 11, 11 45511 463, https://doi.org/10.5194/acp-11-11455-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Wu, R. Jia, and J. Huang, 2018: An overview of the influence of atmospheric circulation on the climate in arid and semi-arid region of Central and East Asia. Sci. China Earth Sci., 61, 11831194, https://doi.org/10.1007/s11430-017-9202-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Q. Zhu, J. Huang, S. Hua, and R. Jia, 2019: Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation. Atmos. Environ., 209, 6777, https://doi.org/10.1016/j.atmosenv.2019.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., T. Shao, S. Hua, Q. Zhu, and R. Luo, 2020a: Association of anthropogenic aerosols with subtropical drought in East Asia. Int. J. Climatol., 40, 35003513, https://doi.org/10.1002/joc.6410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. Li, J. Huang, Q. Zhu, and S. Wang, 2020b: Attribution of the Tibetan Plateau to northern drought. Natl. Sci. Rev., 7, 489492, https://doi.org/10.1093/nsr/nwz191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., G. Yu, and G. Xie, 2005: Tibetan Plateau serves as a water tower. IEEE Trans. Geosci. Remote Sens., 5, 31203123, https://doi.org/10.1109/IGARSS.2005.1526498.

    • Search Google Scholar
    • Export Citation
  • Luo, M., Y. Liu, Q. Zhu, Y. Tang, and K. Alam, 2020: Role and mechanisms of black carbon affecting water vapor transport to Tibet. Remote Sens., 12, 231, https://doi.org/10.3390/rs12020231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massling, A., and Coauthors, 2009: Size segregated water uptake of the urban sub-micrometer aerosol in Beijing. Atmos. Environ., 43, 15781589, https://doi.org/10.1016/j.atmosenv.2008.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., J. Liu, and B. Wang, 2017: How does the South Asian high influence extreme precipitation over eastern China? J. Geophys. Res. Atmos., 122, 42814298, https://doi.org/10.1002/2016JD026075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S. M., M. D. King, S. A. Ackerman, W. P. Menzel, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE. Trans. Geosci. Remote., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, https://doi.org/10.1175/2008JCLI2625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., Z. Jiang, Z. Liu, and L. Li, 2020: A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon. J. Climate, 33, 977992, https://doi.org/10.1175/JCLI-D-19-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability mode over East Asia. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Y. M. Liu, 2016: Impacts of the Tibetan Plateau on Asian climate. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, 7.1–7.29, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0018.1.

    • Crossref
    • Export Citation
  • Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., Y. M. Liu, J. J. Yu, X. Zhu, and R. Ren, 2008: Modulation of land–sea distribution on air–sea interaction and formation of subtropical anticyclones. Chin. J. Atmos. Sci., 32, 720740.

    • Search Google Scholar
    • Export Citation
  • Wu, G. X., Y. Liu, B. He, Q. Bao, A. Duan, and F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., Y. Goldsmith, J. Lan, L. Tan, X. Wang, X. Zhou, J. Cheng, Y. Lang, and C. Liu, 2020: Juxtaposition of western Pacific subtropical high on Asian summer monsoon shapes subtropical East Asian precipitation. Geophys. Res. Lett., 47, e2019GL084705, https://doi.org/10.1029/2019GL084705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi, and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., T. Zhao, C. Lu, Y. Guo, B. Chen, R. Liu, Y. Li, and X. Shi, 2014: An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos. Chem. Phys., 14, 11 28711 295, https://doi.org/10.5194/acp-14-11287-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xuan, S. L., Q. Y. Zhang, and S. Q. Sun, 2011: Anomalous midsummer rainfall in Yangtze River-Huaihe River valleys and its association with the East Asia westerly jet. Adv. Atmos. Sci., 28, 387397, https://doi.org/10.1007/s00376-010-0111-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and P. J. Webster, 1990: The effect of summer tropical heating on the location and intensity of the extratropical westerly jet streams. J. Geophys. Res., 95, 18 70518 721, https://doi.org/10.1029/JD095iD11p18705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D. Z., and G. X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, https://doi.org/10.1007/BF01277509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D. Z., S. W. Luo, and Z. B. Zhu, 1957: The wind structure and heat balance in the lower troposphere over the Tibetan Plateau and its surroundings (in Chinese). Acta Meteor. Sin., 28, 108121.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. C., 1980: The thermal effect of meridional sea–land distribution on the general atmospheric circulation in Eurasia and its contiguous areas (in Chinese). Acta Meteor. Sin., 38, 119226.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, https://doi.org/10.1029/2006GL026377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., A. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn, and M. Fischer, 2009: Atmospheric inverse estimates of methane emissions from Central California. J. Geophys. Res., 114, D16302, https://doi.org/10.1029/2008JD011671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Y. Lin, F. Wu, Y. Wang, Z. Li, D. Rosenfeld, and Y. Wang, 2018: Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys. Res. Lett., 45, 86048611, https://doi.org/10.1029/2018GL079427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Y. Chen, J. Li, H. Letu, Y. Su, T. Chen, and X. Wu, 2019: Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations. Int. J. Climatol., 39, 26122629, https://doi.org/10.1002/joc.5975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2020: Aerosol characteristics and impacts on weather and climate over Tibetan Plateau. Natl. Sci. Rev., 7, 492495, https://doi.org/10.1093/nsr/nwz184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and T. Zhou, 2020: Asian water tower evinced in total column water vapor: A comparison among multiple satellite and reanalysis data sets. Climate Dyn., 54, 231245, https://doi.org/10.1007/s00382-019-04999-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., M. Z. Wang, A. N. Huang, H. J. Li, W. Huo, and Q. Yang, 2014: Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinxiang. Theor. Appl. Climatol., 116, 403411, https://doi.org/10.1007/s00704-013-0948-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 382 0 0
Full Text Views 1716 953 46
PDF Downloads 853 202 24