• Ahn, M.-S., and et al. , 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, https://doi.org/10.1029/2020GL087250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., M. S. Pritchard, and W. D. Collins, 2015: Sensitivity of MJO propagation to a robust positive Indian Ocean dipole event in the superparameterized CAM. J. Adv. Model. Earth Syst., 7, 19011917, https://doi.org/10.1002/2015MS000530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., and et al. , 2020: South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nat. Rev. Earth Environ., 1, 530543, https://doi.org/10.1038/s43017-020-0078-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2012: More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature, 488, 365369, https://doi.org/10.1038/nature11358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and et al. , 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Accessed 2021, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.

  • Cui, J., and T. Li, 2019: Changes of MJO propagation characteristics under global warming. Climate Dyn., 53, 53115327, https://doi.org/10.1007/s00382-019-04864-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere–ocean coupled processes in the Madden–Julian oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., B. O. Wolding, E. D. Maloney, and D. A. Randall, 2018: Atmospheric mechanisms for MJO decay over the Maritime Continent. J. Geophys. Res., 123, 51885204, https://doi.org/10.1029/2017JD026979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubey, S., T. N. Krishnamurti, and V. Kumar, 2018: On scale interactions between the MJO and synoptic scale. Quart. J. Roy. Meteor. Soc., 144, 27272747, https://doi.org/10.1002/qj.3400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Li, and W. Zhu, 2015: Propagating and nonpropagating MJO events over the Maritime Continent. J. Climate, 28, 84308449, https://doi.org/10.1175/JCLI-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haffke, C., and G. Magnusdottir, 2013: The South Pacific Convergence Zone in three decades of satellite images. J. Geophys. Res. Atmos., 118, 10 83910 849, https://doi.org/10.1002/JGRD.50838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. D. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: Mesoscale circulations. An Introduction to Dynamic Meteorology, Academic Press, 279–323.

    • Crossref
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., 2017: Key processes for the eastward propagation of the Madden–Julian Oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755770, https://doi.org/10.1002/2016JD025955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., D. Kim, and E. D. Maloney, 2017: Progress and status of MJO simulation in climate models and process-oriented diagnostics. Sixth Int. Workshop on Monsoons, Singapore, WMO, 119–124.

  • Jones, C., 2009: A homogeneous stochastic model of the Madden-Julian Oscillation. J. Climate, 22, 32703288, https://doi.org/10.1175/2008JCLI2609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., D. Kim, M.-S. Ahn, R. Neale, J. Lee, and P. J. Gleckler, 2020: The role of the mean state on MJO simulation in CESM2 ensemble simulation. Geophys. Res. Lett., 47, e2020GL089824, https://doi.org/10.1029/2020GL089824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2016: Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool. J. Geophys. Res., 121, 87558776, https://doi.org/10.1002/2015JD024661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidwell, A., T. Lee, Y.-H. Jo, and X.-H. Yan, 2016: Characterization of the variability of the South Pacific convergence zone using satellite and reanalysis wind products. J. Climate, 29, 17171732, https://doi.org/10.1175/JCLI-D-15-0536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., H. von Storch, and H. Loon, 1989: Origin of the South Pacific convergence zone. J. Climate, 2, 11851195, https://doi.org/10.1175/1520-0442(1989)002<1185:OOTSPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, https://doi.org/10.1175/2011JCLI4177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., H. Kim, and M. I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44, 25792587, https://doi.org/10.1002/2017GL072643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., D. Kim, F. Vitart, V. E. Toma, J.-S. Kug, and P. J. Webster, 2016: MJO propagation across the Maritime Continent in the ECMWF ensemble prediction system. J. Climate, 29, 39733988, https://doi.org/10.1175/JCLI-D-15-0862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, https://doi.org/10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Lee, H. J., and K. H. Seo, 2019: Impact of the Madden–Julian oscillation on Antarctic sea ice and its dynamical mechanism. Sci. Rep., 9, 10761, https://doi.org/10.1038/s41598-019-47150-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K., W. Yu, Y. Yang, L. Feng, S. Liu, and L. Li, 2020: Spring barrier to the MJO eastward propagation. Geophys. Res. Lett., 47, e2020GL087788, https://doi.org/10.1029/2020GL087788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, R. Joyce, P. Xie, and G. Chen, 2019: Possible role of the diurnal cycle in land convection in the barrier effect on the MJO by the Maritime Continent. Geophys. Res. Lett., 46, 30013011, https://doi.org/10.1029/2019GL081962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2008: Eastern margin variability of the South Pacific convergence zone. Geophys. Res. Lett., 35, L16701, https://doi.org/10.1029/2008GL034298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in zonal wind in tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and J. T. Kiehl, 2002: MJO-related SST variations over the tropical eastern Pacific during Northern Hemisphere summer. J. Climate, 15, 675689, https://doi.org/10.1175/1520-0442(2002)015<0675:MRSVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and H. H. Hendon, 2013: Impacts of the MJO in the Indian Ocean and on the western Australian coast. Climate Dyn., 42, 579595, https://doi.org/10.1007/s00382-012-1643-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2012: A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Quart. J. Roy. Meteor. Soc., 138, 11651178, https://doi.org/10.1002/qj.1870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, J. M. Slingo, and M. Blackburn, 1996: Development of convection along the SPCZ within a Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 122, 669688, https://doi.org/10.1002/qj.49712253106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2011: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 11671180, https://doi.org/10.1007/s00382-011-1237-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2015: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575, 647651, https://doi.org/10.1038/s41586-019-1764-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 33253345, https://doi.org/10.1175/MWR3477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11, 16851702, https://doi.org/10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., J. M. Slingo, P. M. Inness, and W. K. M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13, 769795, https://doi.org/10.1007/s003820050197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402, 279282, https://doi.org/10.1038/46254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, H., P. Ray, B. S. Barrett, M. Tewari, and M. W. Moncrieff, 2018: Role of topography on the MJO in the Maritime Continent: A numerical case study. Climate Dyn., 55, 295314, https://doi.org/10.1007/s00382-018-4275-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, N. Chen, and S. N. Stechmann, 2016: Simple stochastic model for El Niño with westerly wind bursts. Proc. Natl. Acad. Sci. USA, 113, 10 24510 250, https://doi.org/10.1073/pnas.1612002113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, https://doi.org/10.1002/qj.49710243310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, W.-L., H.-H. Hsu, N. Keenlyside, C.-W. June Chang, B.-J. Tsuang, C.-Y. Tu, and L.-C. Jiang, 2017: Effects of surface orography and land–sea contrast on the Madden–Julian oscillation in the Maritime Continent: A numerical study using ECHAM5-SIT. J. Climate, 30, 97259741, https://doi.org/10.1175/JCLI-D-17-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • van der Wiel, K., A. J. Matthews, M. M. Joshi, and D. P. Stevens, 2016: The influence of diabatic heating in the South Pacific Convergence Zone on Rossby wave propagation and the mean flow. Quart. J. Roy. Meteor. Soc., 142, 901910, https://doi.org/10.1002/qj.2692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970, https://doi.org/10.1175/1520-0493(1994)122<1949:TSPCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2003: Indo-Pacific Ocean response to atmospheric intraseasonal variability: 1. Austral summer and the Madden–Julian Oscillation. J. Geophys. Res., 108, 3160, https://doi.org/10.1029/2002JC001620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, https://doi.org/10.1007/BF01026810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., P. J. Webster, and C. D. Hoyos, 2010: On the location and orientation of the South Pacific convergence zone. Climate Dyn., 36, 561578, https://doi.org/10.1007/s00382-010-0871-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., and H.-H., Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448, https://doi.org/10.1175/2009JCLI2825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, https://doi.org/10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and R. Murtugudde, 2020: Oceanic impacts on MJOs detouring near the Maritime Continent. J. Climate, 33, 23712388, https://doi.org/10.1175/JCLI-D-19-0505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. B. Neale, M. Jochum, and R. Murtugudde, 2012a: Improved Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations. J. Climate, 25, 11161136, https://doi.org/10.1175/2011JCLI4059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., A. H. Sobel, and R. Murtugudde, 2012b: Kinetic energy budget for the Madden–Julian oscillation in a multiscale framework. J. Climate, 25, 53865403, https://doi.org/10.1175/JCLI-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., T. Li, M. Zhao, and T. Nasuno, 2019: Interaction between the MJO and high-frequency waves over the Maritime Continent in boreal winter. J. Climate, 32, 38193835, https://doi.org/10.1175/JCLI-D-18-0511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 240 240 18
Full Text Views 248 248 1
PDF Downloads 76 76 3

Impacts of Detoured Madden–Julian Oscillations on the South Pacific Convergence Zone

View More View Less
  • 1 a School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
  • | 2 b Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • | 3 c Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | 4 d Visiting Professor, Indian Institute of Technology–Bombay, Mumbai, India
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Madden–Julian oscillations (MJOs) are a major component of tropical intraseasonal variabilities. There are two paths for MJOs across the Maritime Continent; one is a detoured route into the Southern Hemisphere and the other one is around the equator across the Maritime Continent. Here, it is shown that the detoured and nondetoured MJOs have significantly different impacts on the South Pacific convergence zone (SPCZ). The detoured MJOs trigger strong cross-equatorial meridional winds from the Northern Hemisphere into the Southern Hemisphere. The associated meridional moisture and energy transports due to the background states carried by the intraseasonal meridional winds are favorable for reinforcing the SPCZ. In contrast, the influences of nondetoured MJOs on either hemisphere or the meridional transports across the equator are much weaker. The detoured MJOs can extend their impacts to the surrounding regions by shedding Rossby waves. Due to different background vorticity during detoured MJOs in boreal winter, more ray paths of Rossby waves traverse the Maritime Continent connecting the southern Pacific Ocean and the eastern Indian Ocean, but far fewer Rossby wave paths traverse Australia. Further studies on such processes are expected to contribute to a better understanding of extreme climate and natural disasters on the rim of the southern Pacific and Indian Oceans.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0444.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhou, zhoulei1588@sjtu.edu.cn

This article is included in the YMC: Years of the Maritime Continent Special Collection.

Abstract

Madden–Julian oscillations (MJOs) are a major component of tropical intraseasonal variabilities. There are two paths for MJOs across the Maritime Continent; one is a detoured route into the Southern Hemisphere and the other one is around the equator across the Maritime Continent. Here, it is shown that the detoured and nondetoured MJOs have significantly different impacts on the South Pacific convergence zone (SPCZ). The detoured MJOs trigger strong cross-equatorial meridional winds from the Northern Hemisphere into the Southern Hemisphere. The associated meridional moisture and energy transports due to the background states carried by the intraseasonal meridional winds are favorable for reinforcing the SPCZ. In contrast, the influences of nondetoured MJOs on either hemisphere or the meridional transports across the equator are much weaker. The detoured MJOs can extend their impacts to the surrounding regions by shedding Rossby waves. Due to different background vorticity during detoured MJOs in boreal winter, more ray paths of Rossby waves traverse the Maritime Continent connecting the southern Pacific Ocean and the eastern Indian Ocean, but far fewer Rossby wave paths traverse Australia. Further studies on such processes are expected to contribute to a better understanding of extreme climate and natural disasters on the rim of the southern Pacific and Indian Oceans.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0444.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhou, zhoulei1588@sjtu.edu.cn

This article is included in the YMC: Years of the Maritime Continent Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 503.59 KB)
Save