• Årthun, M., and C. Schrum, 2010: Ocean surface heat flux variability in the Barents Sea. J. Mar. Syst., 83, 8898, https://doi.org/10.1016/j.jmarsys.2010.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Årthun, M., T. Eldevik, L. H. Smedsrud, O. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 47364743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auclair, G., and L. B. Tremblay, 2018: The role of ocean heat transport in rapid sea ice declines in the Community Earth System Model large ensemble. J. Geophys. Res. Oceans, 123, 89418957, https://doi.org/10.1029/2018JC014525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 66915 677, https://doi.org/10.1029/1999JC900100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, https://doi.org/10.1175/JCLI3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunette, C., B. Tremblay, and R. Newton, 2019: Winter coastal divergence as a predictor for the minimum sea ice extent in the Laptev Sea. J. Climate, 32, 10631080, https://doi.org/10.1175/JCLI-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, 2012: Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett., 7, 034011, https://doi.org/10.1088/1748-9326/7/3/034011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. Zhang, and M. E. Mann, 2013: Decadal to centennial variability of the Atlantic from observations and models. Past and Future Changes of the Ocean’s Meridional Overturning Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 131–148, https://doi.org/10.1029/173GM10.

    • Crossref
    • Export Citation
  • DeRepentigny, P., L. B. Tremblay, R. Newton, and S. Pfirman, 2016: Patterns of sea ice retreat in the transition to a seasonally ice-free Arctic. J. Climate, 29, 69937008, https://doi.org/10.1175/JCLI-D-15-0733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. W. Hurrell, and A. S. Phillips, 2017: The role of the North Atlantic Oscillation in European climate projections. Climate Dyn., 49, 31413157, https://doi.org/10.1007/s00382-016-3502-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewdney, J. C., 1979: Climate, soils, vegetation. A Geography of the Soviet Union. 3rd ed. Pergamon Press, 17–37, https://doi.org/10.1016/B978-0-08-023739-8.50014-6.

    • Crossref
    • Export Citation
  • Ding, Q., and et al. , 2019: Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci., 12, 2833, https://doi.org/10.1038/s41561-018-0256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y., C. Proistosescu, K. C. Armour, and D. S. Battisti, 2019: Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: The preeminence of the western Pacific. J. Climate, 32, 54715491, https://doi.org/10.1175/JCLI-D-18-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., A. Jahn, and L. Polvani, 2019: Nonuniform contribution of internal variability to recent Arctic sea ice loss. J. Climate, 32, 40394053, https://doi.org/10.1175/JCLI-D-18-0864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., L. M. Polvani, and L. Sun, 2020: Robust Arctic warming caused by projected Antarctic sea ice loss. Environ. Res. Lett., 15, 104005, https://doi.org/10.1088/1748-9326/abaada.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, K. E., G. Moore, L. W. Cooper, and J. M. Grebmeier, 2015: Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort Seas of the Pacific Arctic region. Prog. Oceanogr., 136, 3249, https://doi.org/10.1016/j.pocean.2015.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frolov, I., Z. Gudkovichand, V. Karlin, E. G. Kovalev, and V. Smolyanitsky, 2009: Climate Change in Eurasian Arctic Shelf Seas: Centennial Ice Cover Observations. Springer-Verlag, 166 pp.

  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell, 1963: On the power spectrum of red noise. J. Atmos. Sci., 20, 182184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., O. Arzel, C. M. Bitz, A. de Montety, and M. Vancoppenolle, 2009: Increased variability of the Arctic summer ice extent in a warmer climate. Geophys. Res. Lett., 36, L23702, https://doi.org/10.1029/2009GL040546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M., C. Bitz, and B. Tremblay, 2006: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, https://doi.org/10.1029/2006GL028024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M., C. Bitz, B. Tremblay, and D. Bailey, 2008: The role of natural versus forced change in future rapid summer Arctic ice loss. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 133–150, https://doi.org/10.1029/180GM10.

    • Crossref
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 2002: The elastic–viscous–plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—Incorporation of metric terms. Mon. Wea. Rev., 130, 18481865, https://doi.org/10.1175/1520-0493(2002)130<1848:TEVPSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, A. K. Turner, N. Jefferey, and S. Elliot, 2008: CICE: The Los Alamos Sea ice model documentation and software user’s manual version 4.0 LA-CC-06-012. Tech. Rep. LA-CC-06-012, 500 pp.

  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation—Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/134GM01.

    • Crossref
    • Export Citation
  • Hutchings, J. K., and D. K. Perovich, 2015: Preconditioning of the 2007 sea-ice melt in the eastern Beaufort Sea, Arctic Ocean. Ann. Glaciol., 56, 9498, https://doi.org/10.3189/2015AoG69A006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itkin, P., and T. Krumpen, 2017: Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay. Cryosphere, 11, 23832391, https://doi.org/10.5194/tc-11-2383-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett., 43, 91139120, https://doi.org/10.1002/2016GL070067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashiwase, H., K. I. Ohshima, S. Nihashi, and H. Eicken, 2017: Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci. Rep., 7, 8170, https://doi.org/10.1038/s41598-017-08467-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, P. M., 1979: An Arctic sea ice data set, 1901–1956. Glaciological Data, Report GD-5: Workshop on Snow Cover and Sea Ice Data, National Snow and Ice Data Center, 101–110.

  • Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-frequency North Atlantic climate variability in the Community Earth System Model large ensemble. J. Climate, 31, 787813, https://doi.org/10.1175/JCLI-D-17-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krumpen, T., M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes, 2013: Variability and trends in Laptev Sea ice outflow between 1992–2011. Cryosphere, 7, 349363, https://doi.org/10.5194/tc-7-349-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. Spreen, and S. Pang, 2013: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res. Oceans, 118, 24082425, https://doi.org/10.1002/jgrc.20191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lesgaft, E., 1913: Arctic Ocean Ice and a Seaway from Europe to Siberia (in Russian). St. Petersburg, 237 pp.

  • Letterly, A., J. Key, and Y. Liu, 2016: The influence of winter cloud on summer sea ice in the Arctic, 1983–2013. J. Geophys. Res. Atmos., 121, 21782187, https://doi.org/10.1002/2015JD024316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 48794894, https://doi.org/10.1175/JCLI3587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581, https://doi.org/10.1175/2011JCLI4002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460, https://doi.org/10.1175/2010JCLI3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • Maslowski, W., R. Newton, P. Schlosser, A. J. Semtner, and D. Martinson, 2000: Modeling recent climate variability in the Arctic Ocean. Geophys. Res. Lett., 27, 37433746, https://doi.org/10.1029/1999GL011227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowski, W., D. Marble, W. Walczowski, U. Schauer, J. L. Clement, and A. J. Semtner, 2004: On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation. J. Geophys. Res., 109, C03032, https://doi.org/10.1029/2001JC001039.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, https://doi.org/10.1175/JCLI-D-12-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2017a: NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 3. National Snow and Ice Data Center, accessed 2019, https://doi.org/10.7265/N59P2ZTG.

    • Crossref
    • Export Citation
  • Meier, W. N., F. Fetterer, and A. K. Windnagel, 2017b: Near-real-time NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 1. National Snow and Ice Data Center, accessed 2019, https://doi.org/10.7265/N5FF3QJ6.

    • Crossref
    • Export Citation
  • Meinshausen, M., and et al. , 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melia, N., K. Haines, and E. Hawkins, 2016: Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett., 43, 97209728, https://doi.org/10.1002/2016GL069315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercier, H., and et al. , 2015: Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Prog. Oceanogr., 132, 250261, https://doi.org/10.1016/j.pocean.2013.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioduszewski, J. R., S. Vavrus, M. Wang, M. Holland, and L. Landrum, 2019: Past and future interannual variability in Arctic sea ice in coupled climate models. Cryosphere, 13, 113124, https://doi.org/10.5194/tc-13-113-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muilwijk, M., L. H. Smedsrud, M. Ilicak, and H. Drange, 2018: Atlantic water heat transport variability in the 20th century Arctic Ocean from a global ocean model and observations. J. Geophys. Res. Oceans, 123, 81598179, https://doi.org/10.1029/2018JC014327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nansen, F., 1915: To the Country of the Future (in Russian). Petrograd, 455 pp.

  • Nikolaeva, A., and N. Shesterikov, 1970: A technique for calculation of ice conditions (Laptev Sea, as example). AARI Proc., 292, 143217.

    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Stroeve, 2018: The trajectory towards a seasonally ice-free Arctic Ocean. Curr. Climate Change Rep., 4, 407416, https://doi.org/10.1007/s40641-018-0113-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., T. Eldevik, L. H. Smedsrud, and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. J. Climate, 31, 49174932, https://doi.org/10.1175/JCLI-D-17-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orvik, K. A., and Ø. Skagseth 2003: The impact of the wind stress curl in the North Atlantic on the Atlantic inflow to the Norwegian Sea toward the Arctic. Geophys. Res. Lett., 30, 1884, https://doi.org/10.1029/2003GL017932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. C. Spillane, D. B. Percival, M. Wang, and H. O. Mofjeld, 2004: Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J. Climate, 17, 32633282, https://doi.org/10.1175/1520-0442(2004)017<3263:SARVOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, https://doi.org/10.5194/essd-5-311-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A. Y., and M. A. Johnson, 1997: Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res., 102, 12 49312 514, https://doi.org/10.1029/97JC00738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A. Y., D. Dukhovskoy, M.-L. Timmermans, R. Krishfield, and J. L. Bamber, 2015: Arctic circulation regimes. Philos. Trans. Roy. Soc., 373A, 20140160, https://doi.org/10.1098/rsta.2014.0160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic oscillation. J. Climate, 15, 26482663, https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and J. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, https://doi.org/10.1038/nclimate3011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and C. Deser, 2019: Pacific Ocean variability influences the time of emergence of a seasonally ice-free Arctic Ocean. Geophys. Res. Lett., 46, 22222231, https://doi.org/10.1029/2018GL081393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, A. D. Crawford, and R. A. Woodgate, 2019: Monthly variability in Bering Strait oceanic volume and heat transports, links to atmospheric circulation and ocean temperature, and implications for sea ice conditions. J. Geophys. Res. Oceans, 124, 93179337, https://doi.org/10.1029/2019JC015422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G., 2018: Arctic storms. Nat. Climate Change, 8, 13, https://doi.org/10.1038/s41558-017-0050-4.

  • Smith, K. L., L. M. Polvani, and L. B. Tremblay, 2018: The impact of stratospheric circulation extremes on minimum Arctic sea ice extent. J. Climate, 31, 71697183, https://doi.org/10.1175/JCLI-D-17-0495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., and et al. , 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

  • Stroeve, J. C., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vize, V. Y., 1944: Hydrological conditions in the ice edge area in the Arctic seas (in Russian). AARI Proc., 184, 125151.

  • Walsh, J. E., 1978: A data set on Northern Hemisphere sea ice extent. Glaciological Data, Report GD-2, Part 1, National Snow and Ice Data Center, 49–51.

  • Walsh, J. E., and C. M. Johnson, 1979: An analysis of Arctic sea ice fluctuations, 1953–77. J. Phys. Oceanogr., 9, 580591, https://doi.org/10.1175/1520-0485(1979)009<0580:AAOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, and F. Fetterer, 2015, updated 2016: Gridded monthly sea ice extent and concentration, 1850 onward, version 1.1. National Snow and Ice Data Center, accessed 2019, https://doi.org/10.7265/N5833PZ5.

    • Crossref
    • Export Citation
  • Walsh, J. E., F. Fetterer, J. Scott Stewart, and W. L. Chapman, 2016: A database for depicting Arctic sea ice variations back to 1850. Geogr. Rev., 107, 89107, https://doi.org/10.1111/j.1931-0846.2016.12195.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R.-B., S. Li, and Z. Han, 2018: Evaluation of the HadISST1 and NSIDC 1850 onward sea ice datasets with a focus on the Barents-Kara Seas. Atmos. Oceanic Sci. Lett., 11, 388395, https://doi.org/10.1080/16742834.2018.1504599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., H. Yu, J. Huang, Y. He, B. Yang, X. Guan, and X. Liu, 2017: Comparison of the Pacific decadal oscillation in climate model simulations and observations. Int. J. Climatol., 38, e99e118, https://doi.org/10.1002/joc.5355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J., B. Tremblay, R. Newton, and R. Allard, 2016: Dynamic preconditioning of the minimum September sea-ice extent. J. Climate, 29, 58795891, https://doi.org/10.1175/JCLI-D-15-0515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., T. J. Weingartner, and R. Lindsay, 2010: The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett., 37, L01602, https://doi.org/10.1029/2009GL041621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., T. J. Weingartner, and R. Lindsay, 2012: Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys. Res. Lett., 39, L24603, https://doi.org/10.1029/2012GL054092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WWF, 2014: Last ice area biophysical reader. World Wildlife Fund, https://arcticwwf.org/newsroom/publications/last-ice-area-biophysical-reader/.

  • Yan, X., R. Zhang, and T. R. Knutson, 2018: Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys. Res. Lett., 45, 43194328, https://doi.org/10.1029/2018GL077378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, J. Winkler, M. Zhou, D. Lenschow, B. Li, X. Wang, and Q. Yang, 2017: Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. Sci. Rep., 7, 45804, https://doi.org/10.1038/srep45804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2015: Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112, 45704575, https://doi.org/10.1073/pnas.1422296112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 220 220 38
Full Text Views 52 52 12
PDF Downloads 66 66 14

Assessment of Decadal Variability in Sea Ice in the Community Earth System Model against a Long-Term Regional Observational Record: Implications for the Predictability of an Ice-Free Arctic

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Uncertainties in the timing of a seasonal ice cover in the Arctic Ocean depend on model physics and parameterizations, natural variability at decadal time scales, and uncertainties in climate scenarios and forcings. We use the Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward data product to assess the simulated decadal variability from the Community Earth System Model–Large Ensemble (CESM-LE) in the Pacific, Eurasian, and Atlantic sectors of the Arctic where a longer observational record exists. Results show that sea ice decadal (8–16 years) variability in CESM-LE is in agreement with the observational record in the Pacific sector of the Arctic, underestimated in the Eurasian sector of the Arctic, specifically in the East Siberian Sea, and slightly overestimated in the Atlantic sector of the Arctic, specifically in the Greenland Sea. Results also show an increase in variability at decadal time scales in the Eurasian and Pacific sectors during the transition to a seasonally ice-free Arctic, in agreement with the observational record although this increase is delayed by 10–20 years. If the current sea ice retreat in the Arctic continues to be Pacific-centric, results from the CESM-LE suggest that uncertainty in the timing of an ice-free Arctic associated with natural variability is realistic, but that a seasonal ice cover may occur earlier than projected.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bruno Tremblay, bruno.tremblay@mcgill.ca

Abstract

Uncertainties in the timing of a seasonal ice cover in the Arctic Ocean depend on model physics and parameterizations, natural variability at decadal time scales, and uncertainties in climate scenarios and forcings. We use the Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward data product to assess the simulated decadal variability from the Community Earth System Model–Large Ensemble (CESM-LE) in the Pacific, Eurasian, and Atlantic sectors of the Arctic where a longer observational record exists. Results show that sea ice decadal (8–16 years) variability in CESM-LE is in agreement with the observational record in the Pacific sector of the Arctic, underestimated in the Eurasian sector of the Arctic, specifically in the East Siberian Sea, and slightly overestimated in the Atlantic sector of the Arctic, specifically in the Greenland Sea. Results also show an increase in variability at decadal time scales in the Eurasian and Pacific sectors during the transition to a seasonally ice-free Arctic, in agreement with the observational record although this increase is delayed by 10–20 years. If the current sea ice retreat in the Arctic continues to be Pacific-centric, results from the CESM-LE suggest that uncertainty in the timing of an ice-free Arctic associated with natural variability is realistic, but that a seasonal ice cover may occur earlier than projected.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bruno Tremblay, bruno.tremblay@mcgill.ca
Save