• Ait-Chaalal, F., and T. Schneider, 2014: Why eddy momentum fluxes are concentrated in the upper troposphere. J. Atmos. Sci., 72, 15851604, https://doi.org/10.1175/JAS-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2020: Revisiting near-inertial wind work: Slab models, relative stress, and mixed layer deepening. J. Phys. Oceanogr., 50, 31413156, https://doi.org/10.1175/JPO-D-20-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S., C. A. T. Ferro, and F. Kwasniok, 2020: Recalibrating wind-speed forecasts using regime-dependent ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 146, 25762596, https://doi.org/10.1002/qj.3806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axismmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, https://doi.org/10.1175/2010JPO4324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, O., and W. R. Young, 2020: Penetration of wind-generated near-inertial waves into a turbulent ocean. J. Phys. Oceanogr., 50, 16991716, https://doi.org/10.1175/JPO-D-19-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belmonte Rivas, M., and A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831852, https://doi.org/10.5194/os-15-831-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendat, J. S., and A. G. Piersol, 2010: Random Data: Analysis and Measurement Procedures. Wiley, 640 pp.

    • Crossref
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, https://doi.org/10.1175/2008JCLI2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bharti, V., C. W. Fairall, B. W. Blomquist, Y. Huang, A. Protat, P. P. Sullivan, S. T. Siems, and M. J. Manton, 2019: Air–sea heat and momentum fluxes in the Southern Ocean. J. Geophys. Res. Atmos., 124, 12 42612 443, https://doi.org/10.1029/2018JD029761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidlot, J.-R., D. J. Holmes, P. A. Wittmann, R. Lalbeharry, and H. S. Chen, 2002: Intercomparison of the performance of operational ocean wave forecasting systems with buoy data. Wea. Forecasting, 17, 287310, https://doi.org/10.1175/1520-0434(2002)017<0287:IOTPOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blein, S., R. Roehrig, A. Voldoire, and G. Faure, 2020: Meso-scale contribution to air–sea turbulent fluxes at GCM scale. Quart. J. Roy. Meteor. Soc., 146, 24662495, https://doi.org/10.1002/qj.3804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophys. Res. Lett., 36, L22701, https://doi.org/10.1029/2009GL040845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. A. Thompson, J. Patoux, K. A. Kelly, and S. Dickinson, 2010: The signature of the midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 11601174, https://doi.org/10.1175/2009JCLI3064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403423, https://doi.org/10.1175/BAMS-D-11-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2019: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front. Mar. Sci., 6, 443, https://doi.org/10.3389/fmars.2019.00443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and E. W. Kolstad, 2010: Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, 62A, 202208, https://doi.org/10.1111/j.1600-0870.2009.00431.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1996: Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Bound.-Layer Meteor., 80, 109125, https://doi.org/10.1007/BF00119014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardone, V. J., R. E. Jensen, D. T. Resio, V. R. Swail, and A. T. Cox, 1996: Evaluation of contemporary ocean wave models in rare extreme events: The “Halloween Storm” of October 1991 and the “storm of the century” of March 1993. J. Atmos. Oceanic Technol., 13, 198230, https://doi.org/10.1175/1520-0426(1996)013<0198:EOCOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., 2018: A new method to objectively classify extratropical cyclones for climate studies: Testing in the southwest Pacific region. J. Climate, 31, 46834704, https://doi.org/10.1175/JCLI-D-17-0746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., 1994: Applications to wave hindcasting and forecasting. Dynamics and Modeling of Ocean Waves, Cambridge University Press, 259–378.

    • Crossref
    • Export Citation
  • Cavaleri, L., 2009: Wave modeling—Missing the peaks. J. Phys. Oceanogr., 39, 27572778, https://doi.org/10.1175/2009JPO4067.1.

  • Cavaleri, L., B. Fox-Kemper, and M. Hemer, 2012: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 16511661, https://doi.org/10.1175/BAMS-D-11-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., A. J. S. Meijers, M. R. Mazloff, S. T. Gille, V. M. Tamsitt, and P. R. Holland, 2019: The effects of enhanced sea ice export from the Ross Sea on recent cooling and freshening of the southeast Pacific. J. Climate, 32, 20132035, https://doi.org/10.1175/JCLI-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chawla, A., D. M. Spindler, and H. L. Tolman, 2013: Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Modell., 70, 189206, https://doi.org/10.1016/j.ocemod.2012.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claud, C., A. M. Carleton, B. Duchiron, and P. Terray, 2009: Southern Hemisphere winter cold-air mesocyclones: Climatic environments and associations with teleconnections. Climate Dyn., 33, 383408, https://doi.org/10.1007/s00382-008-0468-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, C. A. Paulson, P. Niiler, and P. Van Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, https://doi.org/10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driesenaar, T., A. Bentamy, J. de Kloe, and M. B. Rivas, 2019: Quality Information Document for the Global Ocean Wind Products. Copernicus Marine Environment Monitoring Service, 11 pp., https://resources.marine.copernicus.eu/documents/QUID/CMEMS-WIND-QUID-012-002-003-005.pdf.

  • Durrant, T. H., D. J. M. Greenslade, and I. Simmonds, 2013: The effect of statistical wind corrections on global wave forecasts. Ocean Modell., 70, 116131, https://doi.org/10.1016/j.ocemod.2012.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durrant, T. H., D. J. M. Greenslade, I. Simmonds, and F. Woodcock, 2014: Correcting marine surface winds simulated in atmospheric models using spatially and temporally varying linear regression. Wea. Forecasting, 29, 305330, https://doi.org/10.1175/WAF-D-12-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55, 30773086, https://doi.org/10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, H., D. Vandemark, Y. Quilfen, B. Chapron, and B. Beckley, 2006: Assessment of wind-forcing impact on a global wind-wave model using the TOPEX altimeter. Ocean Eng., 33, 14311461, https://doi.org/10.1016/j.oceaneng.2005.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Fletcher, J., S. Mason, and C. Jakob, 2016: The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate, 29, 19992014, https://doi.org/10.1175/JCLI-D-15-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, T., G. Manucharyan, and A. Thompson, 2019: Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence. EarthArXiv, https://eartharxiv.org/repository/view/565/.

    • Crossref
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311, https://doi.org/10.1175/JAS4006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, D., S. T. Gille, A. C. Subramanian, and S. Nguyen, 2017: The role of wind gusts in upper ocean diurnal variability. J. Geophys. Res. Oceans, 122, 77517764, https://doi.org/10.1002/2017JC012794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2005: Statistical characterization of zonal and meridional ocean wind stress. J. Atmos. Oceanic Technol., 22, 13531372, https://doi.org/10.1175/JTECH1789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, https://doi.org/10.1175/2008JCLI2131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and A. K. Betts, 1990: Air–sea interaction during an extreme cold air outbreak from the eastern coast of the United States. Mon. Wea. Rev., 118, 324342, https://doi.org/10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2019: The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363, 11931199, https://doi.org/10.1126/science.aau5153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (High-ResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, https://doi.org/10.1175/JPO2980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Int. Geophys. Ser., 77, 373386, https://doi.org/10.1016/S0074-6142(01)80129-7.

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, https://doi.org/10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Hasselmann, S., and K. Hasselmann, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15, 13691377, https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennessey, J. P., 1977: Some aspects of wind power statistics. J. Appl. Meteor., 16, 119128, https://doi.org/10.1175/1520-0450(1977)016<0119:SAOWPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018a: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed 1 June 2019, https://doi.org/10.24381/cds.adbb2d47.

    • Crossref
    • Export Citation
  • Hersbach, H., and Coauthors, 2018b: ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed 1 June 2019, https://doi.org/10.24381/cds.bd0915c6.

    • Crossref
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holte, J. W., L. D. Talley, T. K. Chereskin, and B. M. Sloyan, 2012: The role of air–sea fluxes in Subantarctic Mode Water formation. J. Geophys. Res., 117, C03040, https://doi.org/10.1029/2011JC007798.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, F., Z. Xu, and W. Guo, 2020: The linkage between CMIP5 climate models’ abilities to simulate precipitation and vector winds. Climate Dyn., 54, 49534970, https://doi.org/10.1007/s00382-020-05259-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A., and J.-R. Bidlot, 2018: Progress in operational wave forecasting. Procedia IUTAM, 26, 1429, https://doi.org/10.1016/j.piutam.2018.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justus, C. G., W. R. Hargraves, A. Mikhail, and D. Graber, 1978: Methods for estimating wind speed frequency distributions. J. Appl. Meteor., 17, 350353, https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus, 42A, 4150, https://doi.org/10.3402/tellusa.v42i1.11858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, https://doi.org/10.1029/2012GL052952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., J. Liu, Z. Wang, H. Wang, Z. Zhang, L. Zhang, and Q. Yang, 2013: Assessment of sea surface wind from NWP reanalyses and satellites in the Southern Ocean. J. Atmos. Oceanic Technol., 30, 18421853, https://doi.org/10.1175/JTECH-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modell., 103, 145160, https://doi.org/10.1016/j.ocemod.2015.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2007: Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J. Climate, 20, 26752690, https://doi.org/10.1175/JCLI4135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, https://doi.org/10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., X. Zhai, Z. Wang, and D. R. Munday, 2018: Mean, variability, and trend of Southern Ocean wind stress: Role of wind fluctuations. J. Climate, 31, 35573573, https://doi.org/10.1175/JCLI-D-17-0481.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., X. Zhai, Z. Wang, and D. R. Munday, 2020: Southern Ocean wind stress in CMIP5 models: Role of wind fluctuations. J. Climate, 33, 12091226, https://doi.org/10.1175/JCLI-D-19-0466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.

  • Lutsko, N. J., I. M. Held, P. Zurita-Gotor, and A. K. O’Rourke, 2017: Lower-tropospheric eddy momentum fluxes in idealized models and reanalysis data. J. Atmos. Sci., 74, 37873797, https://doi.org/10.1175/JAS-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck Institute grand ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C. O., and T. Woollings, 2019: The eddy-driven jet and storm-track responses to boundary layer drag: Insights from an idealized dry GCM study. J. Atmos. Sci., 76, 10551076, https://doi.org/10.1175/JAS-D-18-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., and L. H. Cairns, 2020: A new method to evaluate reanalyses using synoptic patterns: An example application in the Ross Sea/Ross Ice Shelf region. Earth Space Sci., 7, e2019EA000794, https://doi.org/10.1029/2019EA000794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., I. Cerovečki, B. A. King, and V. Tamsitt, 2019: A see-saw in Pacific Subantarctic Mode Water formation driven by atmospheric modes. Geophys. Res. Lett., 46, 13 15213 160, https://doi.org/10.1029/2019GL085280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. Naveira Garabato, A. M. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110, https://doi.org/10.1175/2011JCLI4204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1960: On the generation of surface waves by turbulent shear flows. J. Fluid Mech., 7, 469478, https://doi.org/10.1017/S0022112060000220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2017: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bull. Amer. Meteor. Soc., 98, 13831398, https://doi.org/10.1175/BAMS-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2004: Low-frequency variability of the statistical moments of sea surface winds. Geophys. Res. Lett., 31, L10302, https://doi.org/10.1029/2004GL019599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006a: The probability distribution of sea surface wind speeds. Part I: Theory and SeaWinds observations. J. Climate, 19, 497520, https://doi.org/10.1175/JCLI3640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006b: The probability distribution of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19, 521534, https://doi.org/10.1175/JCLI3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2007: Empirical models of the probability distribution of sea surface wind speeds. J. Climate, 20, 57985814, https://doi.org/10.1175/2007JCLI1609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2008: Probability distribution of sea surface wind stresses. Geophys. Res. Lett., 35, L05704, https://doi.org/10.1029/2007GL032268.

  • Monahan, A. H., 2018: Temporal filtering enhances the skewness of sea surface winds. J. Climate, 31, 56955706, https://doi.org/10.1175/JCLI-D-17-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., and J. C. Fyfe, 2006: On the nature of zonal jet EOFs. J. Climate, 19, 64096424, https://doi.org/10.1175/JCLI3960.1.

  • Monahan, A. H., and J. C. Fyfe, 2009: How generic are dipolar jet EOFs? J. Atmos. Sci., 66, 541551, https://doi.org/10.1175/2008JAS2814.1.

  • Naveira Garabato, A. C., L. Jullion, D. P. Stevens, K. J. Heywood, and B. A. King, 2009: Variability of Subantarctic Mode Water and Antarctic Intermediate Water in the Drake Passage during the late-twentieth and early-twenty-first centuries. J. Climate, 22, 36613688, https://doi.org/10.1175/2009JCLI2621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, https://doi.org/10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and T. Spengler, 2019: Prevailing surface wind direction during air–sea heat exchange. J. Climate, 32, 56015617, https://doi.org/10.1175/JCLI-D-18-0752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogle, S. E., V. Tamsitt, S. A. Josey, S. T. Gille, I. Cerovečki, L. D. Talley, and R. A. Weller, 2018: Episodic Southern Ocean heat loss and its mixed layer impacts revealed by the farthest south multiyear surface flux mooring. Geophys. Res. Lett., 45, 50025010, https://doi.org/10.1029/2017GL076909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, https://doi.org/10.1175/2780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, https://doi.org/10.1175/JCLI3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osinski, R. D., and H. Radtke, 2020: Ensemble hindcasting of wind and wave conditions with WRF and WAVEWATCH III driven by ERA5. Ocean Sci., 16, 355371, https://doi.org/10.5194/os-16-355-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and S. Pfahl, 2016: Importance of latent heating in mesocyclones for the decay of cold air outbreaks: A numerical process study from the Pacific sector of the Southern Ocean. Mon. Wea. Rev., 144, 315336, https://doi.org/10.1175/MWR-D-15-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, https://doi.org/10.1175/JCLI-D-14-00482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavia, E. G., and J. J. O’Brien, 1986: Weibull statistics of wind speed over the ocean. J. Climate Appl. Meteor., 25, 13241332, https://doi.org/10.1175/1520-0450(1986)025<1324:WSOWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. AIP Press, 520 pp.

  • Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417445, https://doi.org/10.1017/S0022112057000233.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, https://doi.org/10.1017/S0022112085002221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., T. G. Shepherd, G. Zappa, and I. Sandu, 2016: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett., 43, 72317240, https://doi.org/10.1002/2016GL069551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., 1980: Properties of near-surface inertial oscillations. J. Phys. Oceanogr., 10, 385398, https://doi.org/10.1175/1520-0485(1980)010<0385:PONSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponce, S., and F. J. Ocampo-Torres, 1998: Sensitivity of a wave model to wind variability. J. Geophys. Res., 103, 31793201, https://doi.org/10.1029/97JC02328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and R. D. Rosen, 2004: Nonlinear effects of variable winds on ocean stress climatologies. J. Climate, 17, 12831293, https://doi.org/10.1175/1520-0442(2004)017<1283:NEOVWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., and C. D. Mobley, 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Proistosescu, C., A. Rhines, and P. Huybers, 2016: Identification and interpretation of nonnormality in atmospheric time series. Geophys. Res. Lett., 43, 54255434, https://doi.org/10.1002/2016GL068880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. J. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, P. Queffeulou, and D. Croizé-Fillon, 2008: A global wave parameter database for geophysical applications. Part 1: Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modell., 25, 154171, https://doi.org/10.1016/j.ocemod.2008.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimann, L., and J.-S. von Storch, 2020: A phase-space consideration of changing climate-PDF. Climate Dyn., 54, 26332662, https://doi.org/10.1007/s00382-020-05130-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127, 23792394, https://doi.org/10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribal, A., and I. R. Young, 2020: Calibration and cross validation of global ocean wind speed based on scatterometer observations. J. Atmos. Oceanic Technol., 37, 279297, https://doi.org/10.1175/JTECH-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and F. J. Wentz, 2016: Remote Sensing Systems ASCAT C-2015 Daily Ocean Vector Winds on 0.25 deg grid, Version 02.1. Remote Sensing Systems, accessed 2 February 2020, www.remss.com/missions/ascat.

  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risken, H., 1996: Fokker-Planck equation. The Fokker-Planck Equation: Methods of Solution and Applications, H. Risken, Ed., Springer Series in Synergetics, Springer, 63–95, https://doi.org/10.1007/978-3-642-61544-3_4.

    • Crossref
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and I. Simmonds, 2015: Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Climate, 28, 33113330, https://doi.org/10.1175/JCLI-D-14-00458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Sallée, J. B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed layer depth to the southern annular mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, https://doi.org/10.1175/BAMS-88-12-1965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., and H. Wernli, 2014: The linkage between the warm and the cold conveyor belts in an idealized extratropical cyclone. J. Atmos. Sci., 71, 14431459, https://doi.org/10.1175/JAS-D-13-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., 2020: Scale and Rossby number dependence of observed wind responses to ocean-mesoscale sea surface temperatures. J. Atmos. Sci., 77, 31713192, https://doi.org/10.1175/JAS-D-20-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, E. W., S. A. Josey, and R. Verein, 2012: First air–sea flux mooring measurements in the Southern Ocean. Geophys. Res. Lett., 39, L16606, https://doi.org/10.1029/2012GL052290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., T. J. Bracegirdle, and I. Simmonds, 2018: Polar climate change as manifest in atmospheric circulation. Curr. Climate Change Rep., 4, 383395, https://doi.org/10.1007/s40641-018-0111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

    • Crossref
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., P. Barpanda, and A. Donohoe, 2018: A moist static energy framework for zonal-mean storm-track intensity. J. Atmos. Sci., 75, 19791994, https://doi.org/10.1175/JAS-D-17-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2003: Modes of atmospheric variability over the Southern Ocean. J. Geophys. Res., 108, 8078, https://doi.org/10.1029/2000JC000542.

  • Simmonds, I., and M. Dix, 1989: The use of mean atmospheric parameters in the calculation of modeled mean surface heat fluxes over the world’s oceans. J. Phys. Oceanogr., 19, 205215, https://doi.org/10.1175/1520-0485(1989)019<0205:TUOMAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and D. A. Jones, 1998: The mean structure and temporal variability of the semiannual oscillation in the southern extratropics. Int. J. Climatol., 18, 473504, https://doi.org/10.1002/(SICI)1097-0088(199804)18:5<473::AID-JOC266>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., A. Rafter, T. Cowan, A. B. Watkins, and K. Keay, 2005: Large-scale vertical momentum, kinetic energy and moisture fluxes in the Antarctic sea-ice region. Bound.-Layer Meteor., 117, 149177, https://doi.org/10.1007/s10546-004-5939-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, https://doi.org/10.1175/JCLI-D-11-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. G. Shepherd, P. Hitchcock, and J. F. Scinocca, 2013: Southern annular mode dynamics in observations and models. Part II: Eddy feedbacks. J. Climate, 26, 52205241, https://doi.org/10.1175/JCLI-D-12-00495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., M. Rantanen, P. Haapanala, J. Räisänen, and H. Järvinen, 2020: The characteristics and structure of extra-tropical cyclones in a warmer climate. Wea. Climate Dyn., 1 (1), 125, https://doi.org/10.5194/wcd-1-1-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, https://doi.org/10.1007/s00382-013-1980-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2013: The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications. Springer, 552 pp.

    • Crossref
    • Export Citation
  • Song, H., J. Marshall, D. J. McGillicuddy, and H. Seo, 2020: Impact of current–wind interaction on vertical processes in the Southern Ocean. J. Geophys. Res. Oceans, 125, e2020JC016046, https://doi.org/10.1029/2020JC016046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., 2020: Explaining the zonal asymmetry in the air–sea net heat flux climatology over the Antarctic Circumpolar Current. J. Geophys. Res. Oceans, 125, e2020JC016215, https://doi.org/10.1029/2020JC016215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., and K. F. Cheung, 2014: Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Modell., 75, 6583, https://doi.org/10.1016/j.ocemod.2013.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taboada, F. G., C. A. Stock, S. M. Griffies, J. Dunne, J. G. John, R. J. Small, and H. Tsujino, 2019: Surface winds from atmospheric reanalysis lead to contrasting oceanic forcing and coastal upwelling patterns. Ocean Modell., 133, 79111, https://doi.org/10.1016/j.ocemod.2018.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., I. Cerovečki, S. A. Josey, S. T. Gille, and E. Schulz, 2020: Mooring observations of air–sea heat fluxes in two Subantarctic Mode Water formation regions. J. Climate, 33, 27572777, https://doi.org/10.1175/JCLI-D-19-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tetzner, D., E. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies. Geosciences, 9, 289, https://doi.org/10.3390/geosciences9070289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. D. Woodworth, 2013: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 14801493, https://doi.org/10.1175/JAS-D-13-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and E. A. Barnes, 2014: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641645, https://doi.org/10.1126/science.1247660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., R. F. Marsden, and D. G. Wright, 1983: Estimation of low-frequency wind stress fluctuations over the open ocean. J. Phys. Oceanogr., 13, 10031011, https://doi.org/10.1175/1520-0485(1983)013<1003:EOLFWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and W. S. Huggett, 1981: Wind-driven inertial oscillations of large spatial coherence. Atmos.–Ocean, 19, 281306, https://doi.org/10.1080/07055900.1981.9649116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, https://doi.org/10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trindade, A., M. Portabella, A. Stoffelen, W. Lin, and A. Verhoef, 2020: ERAstar: A high-resolution ocean forcing product. IEEE Trans. Geosci. Remote Sens., 58, 13371347, https://doi.org/10.1109/TGRS.2019.2946019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuller, S. E., and A. C. Brett, 1984: The characteristics of wind velocity that favor the fitting of a Weibull distribution in wind speed analysis. J. Climate Appl. Meteor., 23, 124134, https://doi.org/10.1175/1520-0450(1984)023<0124:TCOWVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 1996: The Antarctic First Regional Observing Study of the Troposphere (FROST) project. Bull. Amer. Meteor. Soc., 77, 20072032, https://doi.org/10.1175/1520-0477(1996)077<2007:TAFROS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • van Loon, H., 1967: The half-yearly oscillations in middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24, 472486, https://doi.org/10.1175/1520-0469(1967)024<0472:THYOIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. 1st ed. Cambridge University Press, 484 pp., https://doi.org/10.1017/CBO9780511612336.

    • Crossref
    • Export Citation
  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462, https://doi.org/10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, 73737382, https://doi.org/10.1029/92JC00188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 2014: Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods, 12, 351362, https://doi.org/10.4319/lom.2014.12.351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., S. C. Doney, T. Takahashi, and W. R. McGillis, 2002: The effect of using time-averaged winds on regional air–sea CO2 fluxes. Gas Transfer at Water Surfaces, Geophys. Monogr., Vol. 127, Amer. Geophys. Union, 351–356.

    • Crossref
    • Export Citation
  • Wen, C., A. Kumar, and Y. Xue, 2019: Uncertainties in reanalysis surface wind stress and their relationship with observing systems. Climate Dyn., 52, 30613078, https://doi.org/10.1007/s00382-018-4310-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., S. Peteherych, and L. A. Thomas, 1984: A model function for ocean radar cross sections at 14.6 GHz. J. Geophys. Res., 89, 36893704, https://doi.org/10.1029/JC089iC03p03689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., R. Scott, R. Hoffman, S. M. Leidner, R. Atlas, and J. Ardizzone, 2015: Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25 deg grid, Version 2.0. Remote Sensing Systems, www.remss.com/measurements/ccmp.

  • White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., S. A. Nicholson, and M. M. Carranza, 2019: Global impacts of subseasonal (<60 day) wind variability on ocean surface stress, buoyancy flux, and mixed layer depth. J. Geophys. Res. Oceans, 124, 87988831, https://doi.org/10.1029/2019JC015166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J.-H., and J. Vanneste, 2015: A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech., 774, 143169, https://doi.org/10.1017/jfm.2015.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yagi, M., and K. Kutsuwada, 2020: Validation of different global data sets for sea surface wind-stress. Int. J. Remote Sens., 41, 60226049, https://doi.org/10.1080/01431161.2020.1714784.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 293 293 10
Full Text Views 85 85 5
PDF Downloads 118 118 6

Time-Varying Empirical Probability Densities of Southern Ocean Surface Winds: Linking the Leading Mode to SAM and Quantifying Wind Product Differences

View More View Less
  • 1 a Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO2 to the ocean interior. The relationships between mixed layer ventilation, the southern annular mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means. In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index (r = 0.82) and reflect the SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. The joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to midlatitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode. The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0629.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Momme C. Hell, mhell@ucsd.edu

Abstract

Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO2 to the ocean interior. The relationships between mixed layer ventilation, the southern annular mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means. In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index (r = 0.82) and reflect the SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. The joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to midlatitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode. The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0629.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Momme C. Hell, mhell@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.35 MB)
Save