• An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829, https://doi.org/10.3402/tellusa.v18i4.9712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumenthal, M. B., and M. A. Cane, 1989: Accounting for parameter uncertainties in model verification: An illustration with tropical sea surface temperature. J. Phys. Oceanogr., 19, 815830, https://doi.org/10.1175/1520-0485(1989)019<0815:AFPUIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2019: Pan-tropical climate interactions. Science, 288, eaav4236, https://doi.org/10.1126/SCIENCE.AAV4236.

  • Cane, M. A., and S. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and et al. , 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., J. T. Overpeck, and E. R. Cook, 2002: Multiyear La Niña events and persistent droughts in the contiguous United States. Geophys. Res. Lett., 29, 1647, https://doi.org/10.1029/2001GL013561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American droughts: Reconstructions, causes and consequences. Earth-Sci. Rev., 81, 93134, https://doi.org/10.1016/j.earscirev.2006.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M., and A. Gill, 1987: Experiments on tropical circulation with a simple moist model. Quart. J. Roy. Meteor. Soc., 113, 12371269, https://doi.org/10.1002/qj.49711347809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • et al. ., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S. Lee, 2009: Climate response off the equatorial Pacific to global warming. J. Climate, 22, 48734892, https://doi.org/10.1175/2009JCLI2982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2012: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and M. A. Cane, 2009: Pacific decadal variability in the view of linear equatorial wave theory. J. Phys. Oceanogr., 39, 203219, https://doi.org/10.1175/2008JPO3794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, https://doi.org/10.1029/2010GL044444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and et al. , 2018: The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci., 21, 63076327, https://doi.org/10.5194/hess-21-6307-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal timescales. Science, 302, 10271030, https://doi.org/10.1126/science.1089357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and N. E. Graham, 1997: El Niño in the 1990s. J. Geophys. Res., 102, 10 42310 436, https://doi.org/10.1029/97JC00463.

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herweijer, C., and R. Seager, 2008: The global footprint of persistent extratropical drought in the instrumental era. Int. J. Climatol., 28, 17611774, https://doi.org/10.1002/joc.1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, and E. R. Cook, 2006: North American droughts of the mid to late nineteenth century: A history, simulation and implications for mediaeval drought. Holocene, 16, 159171, https://doi.org/10.1191/0959683606hl917rp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694, https://doi.org/10.1126/science.1079053.

  • Hoerling, M. P., J. Eischeid, J. Perlwitz, X. Quan, T. Zhang, and P. Pegion, 2012: On the increased frequency of Mediterranean drought. J. Climate, 25, 21462161, https://doi.org/10.1175/JCLI-D-11-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, H. Wang, W. Wang, and A. Kumar, 2012: Mixed layer heat budget of the El Niño in NCEP Climate Forecast System. Climate Dyn., 39, 365381, https://doi.org/10.1007/s00382-011-1111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. Adler, M. Morrissey, D. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Israeli, M., N. Naik, and M. A. Cane, 2000: An unconditionally stable scheme for the shallow water equations. Mon. Wea. Rev., 128, 810823, https://doi.org/10.1175/1520-0493(2000)128<0810:AUSSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and D. Hartmann, 2017: Nonlinear ENSO warming suppression (NEWS). J. Climate, 30, 42274251, https://doi.org/10.1175/JCLI-D-16-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., R. Kleeman, and C. Eckert, 1997: Greenhouse warming, decadal variability or El Niño? An attempt to understand the anomalous 1990s. J. Climate, 10, 22212239, https://doi.org/10.1175/1520-0442(1997)010<2221:GWDVOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and D. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, https://doi.org/10.1029/2011GL050337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, G. M., 2007: Severe and sustained drought in southern California and the west: Present conditions and insights from the past on causes and impacts. Quat. Int., 173–174, 87100, https://doi.org/10.1016/j.quaint.2007.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., J. L. Betancourt, M. A. Palecki, and H. Hidalgo, 2008: Association of multi-decadal sea surface temperature variability with US drought. Quat. Int., 188, 3140, https://doi.org/10.1016/j.quaint.2007.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623, https://doi.org/10.1175/JCLI3675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E. R., J. G. Vialard, S. C. Kennan, J. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865, https://doi.org/10.1175/JPO2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., S. Shin, and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, https://doi.org/10.1029/2011GL047658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192, https://doi.org/10.1175/2008JCLI2334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., 2019: ENSO diversity from an atmospheric perspective. Curr. Climate Change Rep., 5, 245257, https://doi.org/10.1007/s40641-019-00138-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramesh, N., M. Cane, R. Seager, and D.-E. Lee, 2016: Predictability and prediction of persistent cool states of the tropical Pacific Ocean. Climate Dyn., 49, 22912307, https://doi.org/10.1007/S00382-016-3446-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulation of ENSO. J. Climate, 17, 37613774, https://doi.org/10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004a: Causes of long-term drought in the United States Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004b: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 1991: A simple model of the climatology and variability of the low-level wind field in the tropics. J. Climate, 4, 164179, https://doi.org/10.1175/1520-0442(1991)004<0164:ASMOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn-of-the-century North American drought: Dynamics, global context and prior analogues. J. Climate, 20, 55275552, https://doi.org/10.1175/2007JCLI1529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 2015: Decadal hydroclimate variability across the Americas. Climate Change: Multidecadal and Beyond, C.-P. Chang et al., Eds., World Scientific, 235–254.

    • Crossref
    • Export Citation
  • Seager, R., S. E. Zebiak, and M. A. Cane, 1988: A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res., 93, 12651280, https://doi.org/10.1029/JC093iC02p01265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005a: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527, https://doi.org/10.1256/qj.04.96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005b: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, https://doi.org/10.1175/JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Henderson, M. Cane, H. Liu, and J. Nakamura, 2017: Is there a role for human-induced climate change in the precipitation decline that drive the California drought? J. Climate, 30, 10 23710 258, https://doi.org/10.1175/JCLI-D-17-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. A. Cane, N. Henderson, D. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Chang., 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., K. Fernandes, and S. Camargo, 2015: Two summers of São Paulo drought: Origins in the western tropical Pacific. Geophys. Res. Lett., 42, 10 81610 823, https://doi.org/10.1002/2015GL066314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and T. J. Hoar, 1996: The 1990–1995 El Niño–Southern Oscillation event: Longest on record. Geophys. Res. Lett., 23, 5760, https://doi.org/10.1029/95GL03602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J. Yu, P. DiNezio, and A. Clement, 2017: El Niño and Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Tropical Pacific, P. Glynn, D. Manzello, and I. Enochs, Eds., Springer, 85–106.

    • Crossref
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2000: The surface layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30, 29893008, https://doi.org/10.1175/1520-0485(2001)031<2989:TSLHBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2001: Surface layer temperature balance in the equatorial Pacific during the 1997–98 El Niño and 1998–99 La Niña. J. Climate, 14, 33933407, https://doi.org/10.1175/1520-0442(2001)014<3393:SLTBIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, J. L., C. L. Castro, and J. T. Overpeck, 2009: Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures. J. Climate, 22, 59185932, https://doi.org/10.1175/2009JCLI2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 71297132, https://doi.org/10.1029/JC090iC04p07129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: Oceanic heat content variability and El Niño cycles. J. Phys. Oceanogr., 19, 475486, https://doi.org/10.1175/1520-0485(1989)019<0475:OHCVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 237 237 55
Full Text Views 103 103 19
PDF Downloads 119 119 23

Atmosphere–Ocean Dynamics of Persistent Cold States of the Tropical Pacific Ocean

View More View Less
  • 1 a Lamont Doherty Earth Observatory of Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

Persistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere–ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Seager, seager@ldeo.columbia.edu

Abstract

Persistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere–ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Seager, seager@ldeo.columbia.edu
Save