• Abbot, D. S., and E. Tziperman, 2008a: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, https://doi.org/10.1029/2007GL032286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2008b: A high-latitude convective cloud feedback and equable climates. Quart. J. Roy. Meteor. Soc., 134, 165185, https://doi.org/10.1002/qj.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2009: Controls on the activation and strength of a high-latitude convective cloud feedback. J. Atmos. Sci., 66, 519529, https://doi.org/10.1175/2008JAS2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., C. C. Walker, and E. Tziperman, 2009: Can a convective cloud feedback help to eliminate winter sea ice at high CO2 concentrations? J. Climate, 22, 57195731, https://doi.org/10.1175/2009JCLI2854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alekseev, G., S. Kuzmina, L. Bobylev, A. Urazgildeeva, and N. Gnatiuk, 2019: Impact of atmospheric heat and moisture transport on the Arctic warming. Int. J. Climatol., 39, 35823592, https://doi.org/10.1002/joc.6040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., and C. H. Jackson, 2013: Polar amplification: Is atmospheric heat transport important? Climate Dyn., 41, 533547, https://doi.org/10.1007/s00382-012-1601-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, https://doi.org/10.1007/s00382-005-0018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E., and et al. , 2016: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 533, 380384, https://doi.org/10.1038/nature17423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E., and et al. , 2020: Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun., 11, 4436, https://doi.org/10.1038/s41467-020-17887-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570, https://doi.org/10.1175/2008JCLI2759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, D., M. Holland, E. Hunke, B. Lipscomb, B. Briegleb, C. Bitz, and J. Schramm, 2011: Community Ice CodE (CICE) user’s guide released with CCSM4, 23 pp., http://www.cesm.ucar.edu/models.

  • Balmes, K. A., and Q. Fu, 2018: An investigation of optically very thin ice clouds from ground-based ARM Raman lidars. Atmosphere, 9, 445, https://doi.org/10.3390/atmos9110445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barron, E. J., 1983: A warm, equable Cretaceous: The nature of the problem. Earth-Sci. Rev., 19, 305338, https://doi.org/10.1016/0012-8252(83)90001-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beesley, J. A., and R. E. Moritz, 1999: Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate, 12, 395415, https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and et al. , 2020: Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisphere Earth Syst. Sci., 70, 225251, https://doi.org/10.1071/ES19040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bice, K. L., and R. D. Norris, 2002: Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian). Paleoceanography, 17, 1070, https://doi.org/10.1029/2002PA000778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bijl, P. K., S. Schouten, A. Sluijs, G. J. Reichart, J. C. Zachos, and H. Brinkhuis, 2009: Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature, 461, 776779, https://doi.org/10.1038/nature08399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Block, K., F. A. Schneider, J. Mülmenstädt, M. Salzmann, J. Quaas, K. Block, F. A. Schneider, and J. Mülmenstädt, 2020: Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus, 72A, 114, https://doi.org/10.1080/16000870.2019.1696139.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and et al. , 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodman, R., D. Karoly, M. Dix, I. Harman, J. Srbinovsky, P. Dobrohotoff, and C. Mackallah, 2020: Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model. J. South. Hemisphere Earth Syst. Sci., 70, 166179, https://doi.org/10.1071/ES19033.

    • Search Google Scholar
    • Export Citation
  • Boeke, R. C., and P. C. Taylor, 2016: Evaluation of the Arctic surface radiation budget in CMIP5 models. J. Geophys. Res. Atmos., 121, 85258548, https://doi.org/10.1002/2016JD025099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boeke, R. C., and P. C. Taylor, 2018: Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming. Nat. Commun., 9, 5017, https://doi.org/10.1038/s41467-018-07061-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J. L. Dufresne, and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, https://doi.org/10.1029/2008GL034207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., A. L. Morrison, R. Guzman, J. E. Kay, and W. R. Frey, 2018: Cloud response to Arctic sea ice loss and implications for future feedbacks in the CESM1 climate model. J. Geophys. Res. Atmos., 124, 10031020, https://doi.org/10.1029/2018JD029142.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873, https://doi.org/10.1007/s00382-003-0310-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R., 2015: Climate radiative feedbacks and adjustments at the Earth’s surface. J. Geophys. Res. Atmos., 120, 31733182, https://doi.org/10.1002/2014JD022896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C. J., T. Uttal, C. N. Long, R. S. Stone, M. D. Shupe, and S. Starkweather, 2016: The role of springtime Arctic clouds in determining autumn sea ice extent. J. Climate, 29, 65816596, https://doi.org/10.1175/JCLI-D-16-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and G. F. Herman, 1985: Relationships between large-scale heat and moisture budgets and the occurrence of Arctic stratus clouds. Mon. Wea. Rev., 113, 14411457, https://doi.org/10.1175/1520-0493(1985)113<1441:RBLSHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the last glacial maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2010: Interannual variations of Arctic cloud types in relation to sea ice. J. Climate, 23, 42164232, https://doi.org/10.1175/2010JCLI3492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eberle, J. J., H. C. Fricke, J. D. Humphrey, L. Hackett, M. G. Newbrey, and J. H. Hutchison, 2010: Seasonal variability in Arctic temperatures during early Eocene time. Earth Planet. Sci. Lett., 296, 481486, https://doi.org/10.1016/j.epsl.2010.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfani, E., and N. J. Burls, 2019: The strength of low-cloud feedbacks and tropical climate: A CESM sensitivity study. J. Climate, 32, 24972516, https://doi.org/10.1175/JCLI-D-18-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Bordoni, and T. M. Merlis, 2017: Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport. J. Climate, 30, 189201, https://doi.org/10.1175/JCLI-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, R., B. L. Otto-Bliesner, Y. Xu, E. Brady, T. Fletcher, and A. Ballantyne, 2019: Contributions of aerosol–cloud interactions to mid-Piacenzian seasonally sea ice-free Arctic Ocean. Geophys. Res. Lett., 46, 99209929, https://doi.org/10.1029/2019GL083960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, G. L., D. L. Royer, and D. J. Lunt, 2017: Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frakes, L. A., and J. E. Francis, 1988: A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, 333, 547549, https://doi.org/10.1038/333547a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and et al. , 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, https://doi.org/10.1007/s00382-009-0535-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., P. L. Langen, and T. Mauritsen, 2014: Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J. Climate, 27, 44334450, https://doi.org/10.1175/JCLI-D-13-00551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S., and K. Matthes, 2019: The importance of interactive chemistry for stratosphere–troposphere coupling. Atmos. Chem. Phys., 19, 34173432, https://doi.org/10.5194/acp-19-3417-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, M., Y. Hu, N. Chen, D. Wang, J. Huang, and K. Stamnes, 2019: High cloud coverage over melted areas dominates the impact of clouds on the albedo feedback in the Arctic. Sci. Rep., 9, 9529, https://doi.org/10.1038/s41598-019-44155-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinemann, M., J. H. Jungclaus, and J. Marotzke, 2009: Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM. Climate Past, 5, 785802, https://doi.org/10.5194/cp-5-785-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G., and R. Goody, 1976: Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci., 33, 15371553, https://doi.org/10.1175/1520-0469(1976)033<1537:FAPOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollis, C. J., and et al. , 2019: The DeepMIP contribution to PMIP4: Methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model Dev., 12, 31493206, https://doi.org/10.5194/gmd-12-3149-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and et al. , 2019: Thicker clouds and accelerated Arctic sea ice decline: The atmosphere–sea ice interactions in spring. Geophys. Res. Lett., 46, 69806989, https://doi.org/10.1029/2019GL082791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., and D. Nof, 2006: The ocean circulation in the Southern Hemisphere and its climatic impacts in the Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 231, 928, https://doi.org/10.1016/j.palaeo.2005.07.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Caballero, 2011: The early Eocene equable climate problem revisited. Climate Past, 7, 603633, https://doi.org/10.5194/cp-7-603-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., and D. M. W. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., D. M. W. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and et al. , 2006: The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19, 13271353, https://doi.org/10.1175/JCLI3712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2012a: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, https://doi.org/10.1175/JCLI-D-11-00469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard-Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey, 2012b: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 54335450, https://doi.org/10.1175/JCLI-D-11-00622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., L. Bourdages, N. B. Miller, A. Morrison, V. Yettella, H. Chepfer, and B. Eaton, 2016: Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. J. Geophys. Res. Atmos., 121, 41624176, https://doi.org/10.1002/2015JD024699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and C. A. Shields, 2013: Sensitivity of the Palaeocene-Eocene thermal maximum climate to cloud properties. Philos. Trans. Roy. Soc., 121A, 20130093, https://doi.org/10.1098/rsta.2013.0093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., and J. F. Lamarque, 2008: Maintenance of polar stratospheric clouds in a moist stratosphere. Climate Past, 4, 6978, https://doi.org/10.5194/cp-4-69-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., E. J. Hintsa, J. G. Anderson, and D. W. Keith, 1999: The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature, 402, 399401, https://doi.org/10.1038/46521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., D. P. Schrag, and J. G. Anderson, 2002: On the feedback of stratospheric clouds on polar climate. Geophys. Res. Lett., 29, 1556, https://doi.org/10.1029/2002GL014659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., and L. Brodeau, 2014: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Climate Dyn, 42, 31013120, https://doi.org/10.1007/s00382-013-1821-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., L. Brodeau, R. G. Graversen, J. Karlsson, G. Svensson, M. Tjernström, U. Willén, and K. Wyser, 2013: Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Climate Dyn, 40, 27192743, https://doi.org/10.1007/s00382-012-1505-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kump, L. R., and D. Pollard, 2008: Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320, 195, https://doi.org/10.1126/science.1153883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2007: Polar amplification as a preferred response in an idealized aquaplanet GCM. Climate Dyn., 29, 305317, https://doi.org/10.1007/s00382-006-0221-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., K. Van Tricht, S. Lhermitte, and T. S. L’Ecuyer, 2017: Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys. Res. Lett., 44, 33553364, https://doi.org/10.1002/2016GL072242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y. C., and et al. , 2020: Quantification of the Arctic sea ice-driven atmospheric circulation variability in coordinated large ensemble simulations. Geophys. Res. Lett., 47, e2019GL085397, https://doi.org/10.1029/2019GL085397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., and et al. , 2012: A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP. Climate Past, 8, 17171736, https://doi.org/10.5194/cp-8-1717-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., and et al. , 2021: DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate Past, 17, 203227, https://doi.org/10.5194/cp-17-203-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460, https://doi.org/10.1175/2010JCLI3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, https://doi.org/10.1175/JCLI-D-12-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and M. Henry, 2018: Simple estimates of polar amplification in moist diffusive energy balance models. J. Climate, 31, 58115824, https://doi.org/10.1175/JCLI-D-17-0578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. L., J. E. Kay, H. Chepfer, R. Guzman, and V. Yettella, 2018: Isolating the liquid cloud response to recent Arctic sea ice variability using spaceborne lidar observations. J. Geophys. Res. Atmos., 123, 473490, https://doi.org/10.1002/2017JD027248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, P. N., P. W. Ditchfield, J. Singano, K. G. Harcourt-Brown, C. J. Nicholas, R. K. Olsson, N. J. Shackleton, and M. A. Hall, 2001: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413, 481487, https://doi.org/10.1038/35097000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, R. B., and L. C. Sloan, 2000: High concentrations of greenhouse gases and polar stratospheric clouds: A possible solution to high-latitude faunal migration at the latest Paleocene thermal maximum. Geology, 28, 979, https://doi.org/10.1130/0091-7613(2000)28<979:HCOGGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and M. A. Tolbert, 2001: Studies of polar stratospheric cloud formation. Acc. Chem. Res., 34, 545553, https://doi.org/10.1021/ar950186k.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, S., X. Dong, B. Xi, and J. L. F. Li, 2015: Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations. J. Geophys. Res. Atmos., 120, 77377746, https://doi.org/10.1002/2014JD023022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y. T. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanowsky, E., and et al. , 2019: The role of stratospheric ozone for Arctic–midlatitude linkages. Sci. Rep., 9, 7962, https://doi.org/10.1038/s41598-019-43823-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagoo, N., P. Valdes, R. Flecker, and L. J. Gregoire, 2013: The early Eocene equable climate problem: Can perturbations of climate model parameters identify possible solutions? Philos. Trans. Roy. Soc., 371A, 20130123, https://doi.org/10.1098/rsta.2013.0123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and M. Tjernström, 2009: Stratiform cloud-inversion characterization during the Arctic melt season. Bound.-Layer Meteor., 132, 455474, https://doi.org/10.1007/s10546-009-9407-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J. L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and et al. , 2020: An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, https://doi.org/10.1175/JAS3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and et al. , 2008: A focus on mixed-phase clouds. Bull. Amer. Meteor. Soc., 89, 15491562, https://doi.org/10.1175/2008BAMS2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., and D. Pollard, 1998: Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world. Geophys. Res. Lett., 25, 35173520, https://doi.org/10.1029/98GL02492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., J. C. G. Walker, T. C. Moore, D. K. Rea, and J. C. Zachos, 1992: Possible methane-induced polar warming in the early Eocene. Nature, 357, 320322, https://doi.org/10.1038/357320a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., J. C. G. Walker, and T. C. Moore, 1995: Possible role of oceanic heat transport in early Eocene climate. Paleoceanography, 10, 347356, https://doi.org/10.1029/94PA02928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sluijs, A., and et al. , 2006: Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 441, 610613, https://doi.org/10.1038/nature04668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., and L. M. Polvani, 2014: The surface impacts of Arctic stratospheric ozone anomalies. Environ. Res. Lett., 9, 074015, https://doi.org/10.1088/1748-9326/9/7/074015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., and et al. , 2018: Polar amplification dominated by local forcing and feedbacks. Nat. Climate Chang., 8, 10761081, https://doi.org/10.1038/s41558-018-0339-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K., H. Morrison, G. Feingold, M. D. Shupe, G. de Boer, and J. Harrington, 2011: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, https://doi.org/10.1038/NGEO1332.

    • Search Google Scholar
    • Export Citation
  • Tabazadeh, A., R. P. Turco, K. Drdla, M. Z. Jacobson, and O. B. Toon, 1994: A study of type I polar stratospheric cloud formation. Geophys. Res. Lett., 21, 16191622, https://doi.org/10.1029/94GL01368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., R. C. Boeke, Y. Li, and W. J. D. Thompson, 2019: Arctic cloud annual cycle biases in climate models. Atmos. Chem. Phys., 19, 87598782, https://doi.org/10.5194/acp-19-8759-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., R. A. Ferrare, C. A. Hostetler, M. A. Vaughan, and Q. Fu, 2017: The impact of lidar detection sensitivity on assessing aerosol direct radiative effects. Geophys. Res. Lett., 44, 90599067, https://doi.org/10.1002/2017GL074521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444, https://doi.org/10.1175/JAM2208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and et al. , 2017: The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev., 10, 37153743, https://doi.org/10.5194/gmd-10-3715-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and R. Farneti, 2009: Meridional energy transport in the coupled atmosphere–ocean system: Scaling and numerical experiments. Quart. J. Roy. Meteor. Soc., 135, 16431660, https://doi.org/10.1002/qj.498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, E. C., D. Le Bars, R. Bintanja, and W. Hazeleger, 2019: Oceanic heat transport into the Arctic under high and low CO2 forcing. Climate Dyn., 53, 47634780, https://doi.org/10.1007/s00382-019-04824-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. Huang, B. Sun, C. Quan, J. Wu, and Z. Lin, 2014: Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Sci. Rev., 129, 136147, https://doi.org/10.1016/j.earscirev.2013.11.001.

    • Search Google Scholar
    • Export Citation
  • Wegner, T., D. E. Kinnison, R. R. Garcia, and S. Solomon, 2013: Simulation of polar stratospheric clouds in the specified dynamics version of the Whole Atmosphere Community Climate Model. J. Geophys. Res. Atmos., 118, 49915002, https://doi.org/10.1002/jgrd.50415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willard, D. A., and et al. , 2019: Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Global Planet. Change, 178, 139152, https://doi.org/10.1016/j.gloplacha.2019.04.012.

    • Search Google Scholar
    • Export Citation
  • Winguth, A., C. Shellito, C. Shields, and C. Winguth, 2010: Climate response at the Paleocene-Eocene thermal maximum to greenhouse gas forcing—A model study with CCSM3. J. Climate, 23, 25622584, https://doi.org/10.1175/2009JCLI3113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., W. Tian, and M. P. Chipperfield, 2009: Radiative effect of ozone change on stratosphere–troposphere exchange. J. Geophys. Res., 113, D00B09, https://doi.org/10.1029/2008JD009829.

    • Search Google Scholar
    • Export Citation
  • Zachos, J. C., M. W. Wara, S. Bohaty, M. L. Delaney, M. R. Petrizzo, A. Brill, T. J. Bralower, and I. Premoli-Silva, 2003: A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science, 302, 15511554, https://doi.org/10.1126/science.1090110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zachos, J. C., S. M. Bohaty, C. M. John, H. McCarren, D. C. Kelly, and T. Nielsen, 2007: The Palaeocene-Eocene carbon isotope excursion: Constraints from individual shell planktonic foraminifer records. Philos. Trans. Roy. Soc., 365A, 18291842, https://doi.org/10.1098/rsta.2007.2045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., D. A. Randall, M. J. Webb, and S. A. Klein, 2017: Clearing clouds of uncertainty. Nat. Climate Chang., 7, 674678, https://doi.org/10.1038/nclimate3402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., C. J. Poulsen, and J. E. Tierney, 2019: Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Sci. Adv., 5, eaax1874, https://doi.org/10.1126/sciadv.aax1874.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 573 573 49
Full Text Views 149 149 25
PDF Downloads 184 184 29

A Multimodel Investigation of Atmospheric Mechanisms for Driving Arctic Amplification in Warmer Climates

View More View Less
  • 1 a Climate Change Research Centre and the ARC Centre of Excellence for Climate Extremes, University of New South Wales Sydney, Sydney, New South Wales, Australia
  • | 2 b School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
  • | 3 c Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 4 d School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Victoria, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

When simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern climates. Several mechanisms have been proposed to explain these disagreements, including the unrealistic representation of polar clouds or underestimated poleward heat transport in the models. This study provides an intercomparison of Arctic cloud and atmospheric heat transport (AHT) responses to strong imposed polar-amplified surface ocean warming across four atmosphere-only GCMs. All models simulate an increase in high clouds throughout the year; the resulting reduction in longwave radiation loss to space acts to support the imposed Arctic warming. The response of low- and midlevel clouds varies considerably across the models, with models responding differently to surface warming and sea ice removal. The AHT is consistently weaker in the imposed warming experiments due to a large reduction in dry static energy transport that offsets a smaller increase in latent heat transport, thereby opposing the imposed surface warming. Our idealized polar amplification experiments require very large increases in implied ocean heat transport (OHT) to maintain steady state. Increased CO2 or tropical temperatures that likely characterized past warm climates reduce the need for such large OHT increases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deepashree Dutta, deepashree.dutta@student.unsw.edu.au

Abstract

When simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern climates. Several mechanisms have been proposed to explain these disagreements, including the unrealistic representation of polar clouds or underestimated poleward heat transport in the models. This study provides an intercomparison of Arctic cloud and atmospheric heat transport (AHT) responses to strong imposed polar-amplified surface ocean warming across four atmosphere-only GCMs. All models simulate an increase in high clouds throughout the year; the resulting reduction in longwave radiation loss to space acts to support the imposed Arctic warming. The response of low- and midlevel clouds varies considerably across the models, with models responding differently to surface warming and sea ice removal. The AHT is consistently weaker in the imposed warming experiments due to a large reduction in dry static energy transport that offsets a smaller increase in latent heat transport, thereby opposing the imposed surface warming. Our idealized polar amplification experiments require very large increases in implied ocean heat transport (OHT) to maintain steady state. Increased CO2 or tropical temperatures that likely characterized past warm climates reduce the need for such large OHT increases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deepashree Dutta, deepashree.dutta@student.unsw.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 468.79 KB)
Save