• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baquero-Bernal, A., and M. Latif, 2005: Wind-driven oceanic Rossby waves in the tropical south Indian Ocean with and without an active ENSO. J. Phys. Oceanogr., 35, 729746, https://doi.org/10.1175/JPO2723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327330, https://doi.org/10.1029/2000GL011451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhavani, T. S. D., J. S. Chowdary, G. Bharathi, G. Srinivas, K. V. S. R. Prasad, A. Deshpande, A. Parekh, and C. Gnanaseelan, 2017: Response of the tropical Indian Ocean SST to decay phase of La Niña and associated processes. Dyn. Atmos. Oceans, 80, 110123, https://doi.org/10.1016/j.dynatmoce.2017.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, and Y. Du, 2017: Roles of tropical SST anomalies in modulating the western north Pacific anomalous cyclone during strong La Niña decaying years. Climate Dyn., 49, 633647, https://doi.org/10.1007/s00382-016-3364-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2007: Mechanisms of summertime subtropical southern Indian Ocean sea surface temperature variability: On the importance of humidity anomalies and the meridional advection of water vapor. J. Climate, 20, 48354852, https://doi.org/10.1175/JCLI4271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., and C. Gnanaseelan, 2007: Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int. J. Climatol., 27, 14211438, https://doi.org/10.1002/joc.1482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., C. Gnanaseelan, and S. Chakravorty, 2013: Impact of northwest Pacific anticyclone on the Indian summer monsoon region. Theor. Appl. Climatol., 113, 329336, https://doi.org/10.1007/s00704-012-0785-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 27072727, https://doi.org/10.1007/s00382-016-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1987: El Niño events and their relation to the southern oscillation. J. Geophys. Res., 92, 14 18914 196, https://doi.org/10.1029/JC092iC13p14189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, C., M. J. McPhaden, F. Wang, and S. Hu, 2019: Quantifying the role of oceanic feedbacks on ENSO asymmetry. Geophys. Res. Lett., 46, 21402148, https://doi.org/10.1029/2018GL081332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., T. Li, and Y. C. Chen, 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 35633576, https://doi.org/10.1175/2010JCLI3320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and I. I. I. J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, R. Wu, K. Hu, and W. Chen, 2019: Northwest Pacific anticyclonic anomalies during post–El Niño summers determined by the pace of El Niño decay. J. Climate, 32, 34873503, https://doi.org/10.1175/JCLI-D-18-0793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and B. Huang, 2004: The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res. I, 51, 21232136, https://doi.org/10.1016/j.dsr.2004.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N. C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., S.-I. An, F.-F. Jin, and I.-S. Kang, 2005: Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys. Res. Lett., 32, L05706, https://doi.org/10.1029/2004GL021674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39, L22703, https://doi.org/10.1029/2012GL053777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Du, H. Xu, and B. Ren, 2015a: An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate, 28, 76307640, https://doi.org/10.1175/JCLI-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015b: Climate model errors over the south Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J. Climate, 28, 30933098, https://doi.org/10.1175/JCLI-D-14-00810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, C. He, and Z. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Climate Change, 7, 708712, https://doi.org/10.1038/nclimate3387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, G., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27 58927 602, https://doi.org/10.1029/98JC02546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and et al. , 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and H. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6, 657676, https://doi.org/10.1175/1520-0442(1993)006<0657:SOOAAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., 2013: Important factors for long-term change in ENSO transitivity. Int. J. Climatol., 33, 14951509, https://doi.org/10.1002/joc.3529.

  • Ohba, M., and H. Ueda, 2005: Basin-wide warming in the equatorial Indian Ocean associated with El Niño. SOLA, 1, 8992, https://doi.org/10.2151/sola.2005-024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348, https://doi.org/10.2151/jmsj.85.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192, https://doi.org/10.1175/2008JCLI2334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and M. Watanabe, 2012: Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J. Climate, 25, 33213335, https://doi.org/10.1175/JCLI-D-11-00409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., P. DiNezio, and C. Deser, 2017: Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophys. Res. Lett., 44, 11 61411 623, https://doi.org/10.1002/2017GL075034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périgaud, C., and P. Delecluse, 1992: Annual sea level variations in the southern tropical Indian Ocean from Geosat and shallow water simulations. J. Geophys. Res., 97, 20 16920 178, https://doi.org/10.1029/92JC01961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al. , 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI Tech. Rep. 349, 127 pp.

  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, https://doi.org/10.1029/2011GL047992.

  • Sasai, Y., A. Ishida, Y. Yamanaka, and H. Sasaki, 2004: Chlorofluorocarbons in a global ocean eddy-resolving OGCM: Pathway and formation of Antarctic Bottom Water. Geophys. Res. Lett., 31, L12305, https://doi.org/10.1029/2004GL019895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., and et al. , 2004: A series of eddy-resolving ocean simulations in the world ocean—OFES (OGCM for the Earth Simulator) project. Oceans ’04 MTS/IEEE Techno-Ocean ’04, Kobe, Japan, IEEE, 1535–1541, https://doi.org/10.1109/OCEANS.2004.1406350.

    • Crossref
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 157–185.

    • Crossref
    • Export Citation
  • Schott, F. A., S.-P. Xie, and P. M. J. Julian, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, R. Wu, K. Hu, P. Wang, and D. Chen, 2017: Asymmetry in summertime atmospheric circulation anomalies over the northwest Pacific during decaying phase of El Niño and La Niña. Climate Dyn., 49, 20072023, https://doi.org/10.1007/s00382-016-3432-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., and Y. Tanimoto, 2004: Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteor. Soc. Japan, 82, 10071018, https://doi.org/10.2151/jmsj.2004.1007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., and J. Matsumoto, 2000: A possible triggering process of east–west asymmetric anomalies over the Indian Ocean in relation to 1997/98 El Niño. J. Meteor. Soc. Japan, 78, 803818, https://doi.org/10.2151/jmsj1965.78.6_803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, W. Yu, and S. Xu, 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 23492354, https://doi.org/10.1002/grl.50431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., F. Liu, B. Wang, B. Xiang, C. Xing, and H. Wang, 2019: Different responses of East Asian summer rainfall to El Niño decays. Climate Dyn., 53, 14971515, https://doi.org/10.1007/s00382-019-04684-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 129 39
Full Text Views 50 50 19
PDF Downloads 62 62 25

Asymmetric Relationship between ENSO and the Tropical Indian Ocean Summer SST Anomalies

View More View Less
  • 1 a School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
  • | 2 b College of Oceanography, Hohai University, Nanjing, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • | 3 c Laboratory for Climate Studies and CMA–NJU Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

During the summer following El Niño, a basinwide sea surface temperature (SST) warming takes place over the tropical Indian Ocean (TIO), exerting profound influences on the Asian summer monsoon. This is an important source of seasonal predictability for the Asian summer monsoon. Based on observations, however, the present study finds that the relationship between El Niño–Southern Oscillation (ENSO) and the TIO SST anomalies during the decaying summer is asymmetric with a much weaker relationship between La Niña and the TIO SST anomalies relative to El Niño. The analyses show that this asymmetric relationship can be explained by the asymmetries in initial TIO SST, the oceanic Rossby wave in the southern Indian Ocean, and the ENSO decaying rate. In contrast to El Niño events, La Niña events tend to have a stronger initial TIO warming and a lower peak intensity with a weaker oceanic Rossby wave response in the southern Indian Ocean. On the other hand, La Niña events tend to decay more slowly with the persistent SST cooling over the central equatorial Pacific in the following summer. The equatorial Pacific SST cooling induces an anomalous anticyclone via a Gill-type Rossby wave response, weakening the positive feedback between the anomalous cyclone spanning the tropical northwest Pacific and north Indian Oceans and the TIO summer basinwide SST cooling. These results have important implications for the climate predictability of the Indian Ocean and Asian summer monsoon.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gen Li, ligen@hhu.edu.cn

Abstract

During the summer following El Niño, a basinwide sea surface temperature (SST) warming takes place over the tropical Indian Ocean (TIO), exerting profound influences on the Asian summer monsoon. This is an important source of seasonal predictability for the Asian summer monsoon. Based on observations, however, the present study finds that the relationship between El Niño–Southern Oscillation (ENSO) and the TIO SST anomalies during the decaying summer is asymmetric with a much weaker relationship between La Niña and the TIO SST anomalies relative to El Niño. The analyses show that this asymmetric relationship can be explained by the asymmetries in initial TIO SST, the oceanic Rossby wave in the southern Indian Ocean, and the ENSO decaying rate. In contrast to El Niño events, La Niña events tend to have a stronger initial TIO warming and a lower peak intensity with a weaker oceanic Rossby wave response in the southern Indian Ocean. On the other hand, La Niña events tend to decay more slowly with the persistent SST cooling over the central equatorial Pacific in the following summer. The equatorial Pacific SST cooling induces an anomalous anticyclone via a Gill-type Rossby wave response, weakening the positive feedback between the anomalous cyclone spanning the tropical northwest Pacific and north Indian Oceans and the TIO summer basinwide SST cooling. These results have important implications for the climate predictability of the Indian Ocean and Asian summer monsoon.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gen Li, ligen@hhu.edu.cn
Save