• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and et al. , 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and A. Voigt, 2020: Seasonal and CO2-induced shifts of the ITCZ: Testing energetic controls in idealized simulations with comprehensive models. J. Climate, 33, 28532870, https://doi.org/10.1175/JCLI-D-19-0602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., T. Schneider, and A. N. Meckler, 2017: A conceptual model for the response of tropical rainfall to orbital variations. J. Climate, 30, 83758391, https://doi.org/10.1175/JCLI-D-16-0691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell, 2018:Change in future climate due to Antarctic meltwater. Nature, 564, 5358, https://doi.org/10.1038/s41586-018-0712-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.1111/j.2153-3490.1969.tb00466.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabré, A., I. Marinov, and A. Gnanadesikan, 2017: Global atmospheric teleconnections and multidecadal climate oscillations driven by Southern Ocean convection. J. Climate, 30, 81078126, https://doi.org/10.1175/JCLI-D-16-0741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, I. M. Held, and P. J. Phillipps, 2018: The role of the water vapor feedback in the ITCZ response to hemispherically asymmetric forcings. J. Climate, 31, 36593678, https://doi.org/10.1175/JCLI-D-17-0723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., and J. C. H. Chiang, 2013: Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Climate Dyn., 40, 14351452, https://doi.org/10.1007/s00382-012-1482-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans, 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, https://doi.org/10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and A. Voigt, 2017: Why future shifts in tropical precipitation will likely be small: The location of the tropical rain belt and the hemispheric contrast of energy input to the atmosphere. Climate Extremes Patterns Mech., 226, 115137, https://doi.org/10.1002/9781119068020.ch8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, https://doi.org/10.1175/JCLI-D-13-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and S. Bordoni, 2016: Characterizing the Hadley circulation response through regional climate feedbacks. J. Climate, 29, 613622, https://doi.org/10.1175/JCLI-D-15-0424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and et al. , 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., J. Marshall, and A. Donohoe, 2017: Twentieth century correlations between extratropical SST variability and ITCZ shifts. Geophys. Res. Lett., 44, 90399047, https://doi.org/10.1002/2017GL075044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., J. Marshall, and J.-M. Campin, 2019: The ‘sticky’ ITCZ: Ocean-moderated ITCZ shifts. Climate Dyn., 53 (1–2), 119, https://doi.org/10.1007/s00382-019-04623-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and T. Martin, 2017: The Arctic-Subarctic sea ice system is entering a seasonal regime: Implications for future Arctic amplification. Sci. Rep., 7, 4618, https://doi.org/10.1038/s41598-017-04573-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, https://doi.org/10.1007/s00382-016-3205-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., 2019: Theories for past and future monsoon rainfall changes. Curr. Climate Change Rep., 5, 160171, https://doi.org/10.1007/s40641-019-00137-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24 807, https://doi.org/10.1029/2010GL045440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., H.-Y. Tseng, K.-C. Li, S. M. Kang, Y.-J. Chen, and J. C. H. Chiang, 2021: Relative roles of energy and momentum fluxes in the tropical response to extratropical thermal forcing. J. Climate, 34, 37713786, https://doi.org/10.1175/JCLI-D-20-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., 2020: Extratropical influence on the tropical rainfall distribution. Curr. Climate Change Rep., 6 (2), 113, https://doi.org/10.1007/s40641-020-00154-y.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and I. M. Held, 2012: Tropical precipitation, SSTs and the surface energy budget: A zonally symmetric perspective. Climate Dyn., 38, 19171924, https://doi.org/10.1007/s00382-011-1048-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, and S.-P. Xie, 2014: Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate Dyn., 42, 20332043, https://doi.org/10.1007/s00382-013-1863-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., B.-M. Kim, D. M. W. Frierson, S.-J. Jeong, J. Seo, and Y. Chae, 2015a: Seasonal dependence of the effect of Arctic greening on tropical precipitation. J. Climate, 28, 60866095, https://doi.org/10.1175/JCLI-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., R. Seager, D. M. W. Frierson, and X. Liu, 2015b: Croll revisited: Why is the Northern Hemisphere warmer than the Southern Hemisphere? Climate Dyn., 44, 14571472, https://doi.org/10.1007/s00382-014-2147-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018a: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and F. Codron, 2018b: The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM. Geosci. Lett., 5 (1), 22, https://doi.org/10.1186/s40562-018-0124-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and et al. , 2019: Extratropical-Tropical Interaction Model Intercomparison Project (ETIN-MIP): Protocol and initial results. Bull. Amer. Meteor. Soc., 100, 25892606, https://doi.org/10.1175/BAMS-D-18-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., S.-P. Xie, Y. Shin, H. Kim, Y.-T. Hwang, M. F. Stuecker, B. Xiang, and M. Hawcroft, 2020: Walker circulation response to extratropical radiative forcing. Sci. Adv., 6, eabd3021, https://doi.org/10.1126/sciadv.abd3021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., S. M. Kang, Y. Shin, and N. Feldl, 2018: Sensitivity of polar amplification to varying insolation conditions. J. Climate, 31, 49334947, https://doi.org/10.1175/JCLI-D-17-0627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutavas, A., and J. Lynch-Stieglitz, 2004: Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Springer, 347–369.

    • Crossref
    • Export Citation
  • Kraus, E. B., 1977: Subtropical droughts and cross-equatorial energy transports. Mon. Wea. Rev., 105, 10091018, https://doi.org/10.1175/1520-0493(1977)105<1009:SDACEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lea, D. W., D. K. Pak, L. C. Peterson, and K. A. Hughen, 2003: Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science, 301, 13611364, https://doi.org/10.1126/science.1088470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, https://doi.org/10.1038/nature12945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Saravanan, and P. Chang, 2011: The role of the wind–evaporation–sea surface temperature (WES) feedback as a thermodynamic pathway for the equatorward propagation of high-latitude sea ice–induced cold anomalies. J. Climate, 24, 13501361, https://doi.org/10.1175/2010JCLI3455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreno-Chamarro, E., J. Marshall, and T. L. Delworth, 2020: Linking ITCZ migrations to the AMOC and North Atlantic/Pacific SST decadal variability. J. Climate, 33, 893905, https://doi.org/10.1175/JCLI-D-19-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, L. C., G. H. Haug, K. A. Hughen, and U. Röhl, 2000: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290, 19471951, https://doi.org/10.1126/science.290.5498.1947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, W. H. G., P. J. Valdes, and J. S. Singarayer, 2017: Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophys. Res. Lett., 44, 63736382, https://doi.org/10.1002/2017GL073103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and I. G. Watterson, 1984: Stationary Rossby wave propagation through easterly layers. J. Atmos. Sci., 41, 20692083, https://doi.org/10.1175/1520-0469(1984)041<2069:SRWPTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2017: Feedback of atmosphere–ocean coupling on shifts of the intertropical convergence zone. Geophys. Res. Lett., 44, 11,644653, https://doi.org/10.1002/2017GL075817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteor. Climatol., 8, 392400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and D. M. W. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate, 27, 30353042, https://doi.org/10.1175/JCLI-D-13-00691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and T. M. Merlis, 2017: A model intercomparison of the tropical precipitation response to a CO2 doubling in aquaplanet simulations. Geophys. Res. Lett., 44, 9931000, https://doi.org/10.1002/2016GL072347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., A. Voigt, S. M. Kang, and J. Seo, 2015: Response of the intertropical convergence zone to zonally asymmetric subtropical surface forcings. Geophys. Res. Lett., 42, 99619969, https://doi.org/10.1002/2015GL066027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, Y., S. M. Kang, and M. Watanabe, 2017: Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming. Climate Dyn., 49, 37533763, https://doi.org/10.1007/s00382-017-3543-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, and Y. Tian, 2017: Eddy influences on the strength of the Hadley circulation: Dynamic and thermodynamic perspectives. J. Atmos. Sci., 74, 467486, https://doi.org/10.1175/JAS-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and et al. , 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., and et al. , 2020: Strong remote control of future equatorial warming by off-equatorial forcing. Nat. Climate Change, 10, 124129, https://doi.org/10.1038/s41558-019-0667-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, https://doi.org/10.1073/pnas.1116706108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., 2006: Processes controlling the tropical Pacific mean precipitation pattern. Ph.D. dissertation, University of Washington, 135 pp.

  • Takahashi, K., and D. S. Battisti, 2007a: Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J. Climate, 20, 34343451, https://doi.org/10.1175/JCLI4198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007b: Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Climate, 20, 56965706, https://doi.org/10.1175/2007JCLI1656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–southern oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans, 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and et al. , 2017: Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol. J. Adv. Model. Earth Syst., 9, 870892, https://doi.org/10.1002/2016MS000902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J. W., and I. Eisenman, 2015: How climate model complexity influences sea ice stability. J. Climate, 28, 39984014, https://doi.org/10.1175/JCLI-D-14-00654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., A. S. Auler, R. L. Edwards, H. Cheng, P. S. Cristalli, P. L. Smart, D. A. Richards, and C.-C. Shen, 2004: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 432, 740743, https://doi.org/10.1038/nature03067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C.-C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348, https://doi.org/10.1126/science.1064618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 17081725, https://doi.org/10.1029/2018MS001313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. H., A. A. McFarlane, D. M. W. Frierson, S. M. Kang, Y. Shin, and M. Friedman, 2018: Tropical precipitation and cross-equatorial heat transport in response to localized heating: Basin and hemisphere dependence. Geophys. Res. Lett., 45, 11 94911 958, https://doi.org/10.1029/2018GL078781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woelfle, M. D., C. S. Bretherton, and D. M. W. Frierson, 2015: Time scales of response to antisymmetric surface fluxes in an aquaplanet GCM. Geophys. Res. Lett., 42, 25552562, https://doi.org/10.1002/2015GL063372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, Y. Ming, W. Yu, and S. M. Kang, 2018: Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. J. Climate, 31, 56095628, https://doi.org/10.1175/JCLI-D-17-0566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., 2004: The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Springer, 121–152.

    • Crossref
    • Export Citation
  • Xie, S., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, https://doi.org/10.1175/2008JCLI2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., and M. S. Pritchard, 2019: A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to latitudinally discrete solar forcing in CESM1.2. J. Climate, 32, 22072226, https://doi.org/10.1175/JCLI-D-18-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. J. Hack, J. T. Kiehl, and R. D. Cess, 1994: Diagnostic study of climate feedback processes in atmospheric general circulation models. J. Geophys. Res., 99, 55255537, https://doi.org/10.1029/93JD03523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, https://doi.org/10.1175/JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., S. M. Kang, and I. M. Held, 2010: Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. J. Climate, 23, 378389, https://doi.org/10.1175/2009JCLI3118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 218 218 35
Full Text Views 48 48 4
PDF Downloads 65 65 5

Evolution of the Tropical Response to Periodic Extratropical Thermal Forcing

View More View Less
  • 1 a School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
  • | 2 b Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Lima, Peru
  • | 3 c Department of Oceanography and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii
  • | 4 d Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study examines the temporal evolution of the extratropically forced tropical response in an idealized aquaplanet model under equinox condition. We apply a surface thermal forcing in the northern extratropics that oscillates periodically in time. It is shown that tropical precipitation is unaltered by sufficiently high-frequency extratropical forcing. This sensitivity to the extratropical forcing periodicity arises from the critical time required for sea surface temperature (SST) adjustment. Low-frequency extratropical forcing grants sufficient time for atmospheric transient eddies to diffuse moist static energy to perturb the midlatitude SSTs outside the forcing region, as demonstrated by a one-dimensional energy balance model with a fixed diffusivity. As the transient eddies weaken in the subtropics, a further equatorward advection is accomplished by the Hadley circulation. The essential role of Hadley cell advection in connecting the subtropical signal to the equatorial region is supported by an idealized thermodynamical-advective model. Associated with the SST changes in the tropics is a meridional shift of the intertropical convergence zone. Since the time needed for SST adjustment increases with increasing mixed layer depth, the critical forcing period at which the extratropical forcing can affect the tropics scales linearly with the mixed layer depth. Our results highlight the important role of decadal-and-longer extratropical climate variability in shaping the tropical climate system. We also raise the possibility that the transient behavior of a tropical response forced by extratropical variability may be strongly dependent on cloud radiative effects.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah M. Kang, skang@unist.ac.kr

Abstract

This study examines the temporal evolution of the extratropically forced tropical response in an idealized aquaplanet model under equinox condition. We apply a surface thermal forcing in the northern extratropics that oscillates periodically in time. It is shown that tropical precipitation is unaltered by sufficiently high-frequency extratropical forcing. This sensitivity to the extratropical forcing periodicity arises from the critical time required for sea surface temperature (SST) adjustment. Low-frequency extratropical forcing grants sufficient time for atmospheric transient eddies to diffuse moist static energy to perturb the midlatitude SSTs outside the forcing region, as demonstrated by a one-dimensional energy balance model with a fixed diffusivity. As the transient eddies weaken in the subtropics, a further equatorward advection is accomplished by the Hadley circulation. The essential role of Hadley cell advection in connecting the subtropical signal to the equatorial region is supported by an idealized thermodynamical-advective model. Associated with the SST changes in the tropics is a meridional shift of the intertropical convergence zone. Since the time needed for SST adjustment increases with increasing mixed layer depth, the critical forcing period at which the extratropical forcing can affect the tropics scales linearly with the mixed layer depth. Our results highlight the important role of decadal-and-longer extratropical climate variability in shaping the tropical climate system. We also raise the possibility that the transient behavior of a tropical response forced by extratropical variability may be strongly dependent on cloud radiative effects.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah M. Kang, skang@unist.ac.kr
Save