• Alexander, L. V., and et al. , 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S., J. V. Ratnam, Y. Masumoto, and T. Yamagata, 2012: Origin of extreme summers in European: The Indo-Pacific connection. Climate Dyn., 41, 663676. https://doi.org/10.1007/s00382-012-1524-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217223, https://doi.org/10.1256/wea.74.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannaby, H., and Y. S. Hüsrevoğlu, 2009: The influence of low-frequency variability and long-term trends in North Atlantic sea surface temperature on Irish waters. ICES J. Mar. Sci., 66, 14801489, https://doi.org/10.1093/icesjms/fsp062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2019: Influences of tropical circulation and sea surface temperature anomalies on extreme heat over Northeast Asia in the midsummer of 2018. Atmos. Oceanic Sci. Lett., 12, 238245, https://doi.org/10.1080/16742834.2019.1611170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and T. Zhou, 2018: Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Climate Dyn., 51, 44034419, https://doi.org/10.1007/s00382-017-3871-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., and A. Robinson, 2013: Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett., 8, 034018, https://doi.org/10.1088/1748-9326/8/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, A. Lin, C. Li, and C. Hu, 2019: Unprecedented East Asian warming in spring 2018 linked to the North Atlantic tripole SST mode. Atmos. Oceanic Sci. Lett., 12, 246253, https://doi.org/10.1080/16742834.2019.1605807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, https://doi.org/10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feudale, L., and J. Shukla, 2011: Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: An observational study. Climate Dyn., 36, 16911703, https://doi.org/10.1007/s00382-010-0788-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture: Atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and et al. , 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and et al. , 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383395, https://doi.org/10.1007/s00382-002-0245-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, C., and I. Ishikawa, 2019: Prolonged northern- mid-latitude tropospheric warming in 2018 well predicted by the JMA operational seasonal prediction system. SOLA, 15A, 3136, https://doi.org/10.2151/sola.15A-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, and S. Rahmstorf, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054 002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H. Weng, 1999: Interannual, decadal-interdecadal, and global warming signals in the sea surface temperature during 1955–77. J. Climate, 12, 12571267, https://doi.org/10.1175/1520-0442(1999)012<1257:IDIAGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., and H.-H. Hsu, 2013: Identification of the Eurasian-Pacific multidecadal oscillation and its relationship with AMO. J. Climate, 26, 81398153, https://doi.org/10.1175/JCLI-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., C.-C. Hong, and H.-H. Hsu, 2015: Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 16121618, https://doi.org/10.1002/2014GL062956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., C. Zhu, J. Su, S. Ma, and K. Xu, 2019: Record-breaking northward shift of the western North Pacific subtropical high in July 2018. J. Meteor. Soc. Japan, 97, 913925, https://doi.org/10.2151/jmsj.2019-047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., B. Dousset, I. R. Caldwell, F. E. Powell, R. C. Geronimo, and C. R. Bielecki, 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Nishii, K., B. Taguchi, and H. Nakamura, 2020: An atmospheric general circulation model assessment of oceanic impacts on extreme climatic events over Japan in July 2018. J. Meteor. Soc. Japan, 98, 801820, https://doi.org/10.2151/jmsj.2020-041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneidereit, A., S. Schubert, P. Vargin, F. Lunkeit, X. Zhu, D. H. W. Peters, and K. Fraedrich, 2012: Large-scale flow and the long-lasting blocking high over Russia: Summer 2010. Mon. Wea. Rev., 140, 29672981, https://doi.org/10.1175/MWR-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, M. M., J. Zscheischler, R. Wartenburger, D. Dee, and S. I. Seneviratne, 2019: Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Future, 7, 692703, https://doi.org/10.1029/2019EF001189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, S. Y. Yim, and B. Xiang, 2013: Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA, 110, 53475352, https://doi.org/10.1073/pnas.1219405110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: The stippling shows statistically significant grid points. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2005: North Atlantic decadal variability: Air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J. Climate, 18, 331349, https://doi.org/10.1175/JCLI-3264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., S. Russo, S. di Sabatino, M. Michetti, E. Scoccimarro, and S. Gualdi, 2016: Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Sci. Total Environ., 571, 13301339, https://doi.org/10.1016/j.scitotenv.2016.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, J., and C. Wang, 2019: Hot summers in the Northern Hemisphere. Geophys. Res. Lett., 46, 10 89110 900, https://doi.org/10.1029/2019GL084219.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 179 179 17
Full Text Views 49 49 6
PDF Downloads 66 66 8

Relative Contribution of Trend and Interannually Varying SST Anomalies to the 2018 Heat Waves in the Extratropical Northern Hemisphere

View More View Less
  • 1 a Department of Earth and Life, University of Taipei, Taipei, Taiwan
  • | 2 b Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
  • | 3 c Central Weather Bureau, Taipei, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The northern extratropics—including regions in northern Europe, northeast Asia, and North America—experienced extremely prolonged heat waves during May–August 2018. Record-breaking surface temperatures, which caused numerous deaths, were observed in several cities. The 2018 heat waves exhibited a circumglobal characteristic owing to a circumpolar perturbation (CCP) in the middle–upper troposphere of the Northern Hemisphere (NH). The CCP had two parts: a wavelike perturbation and a hemispheric perturbation that was almost zonally symmetric. Singular-value decomposition analysis revealed that the zonally symmetric perturbation was coupled to the SST warming trend, whereas the wavelike perturbation was primarily coupled to the interannually varying SST anomaly (SSTA), particularly in the tropical North Pacific, which reached an extreme in 2018. Numerical experiments confirmed that the zonally symmetric component primarily resulted from the SSTA associated with the warming trend, whereas the interannually varying SSTAs in the NH contributed mostly to the wavelike perturbation. The warming trend component of SSTA, especially that in the tropics, compounded by the unusually large SSTAs in 2018, was hypothesized to have contributed to inducing the circumpolar circulation anomaly that caused the record-breaking heat waves in the extratropical NH in 2018.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huang-Hsiung Hsu, hhhsu@gate.sinica.edu.tw

Abstract

The northern extratropics—including regions in northern Europe, northeast Asia, and North America—experienced extremely prolonged heat waves during May–August 2018. Record-breaking surface temperatures, which caused numerous deaths, were observed in several cities. The 2018 heat waves exhibited a circumglobal characteristic owing to a circumpolar perturbation (CCP) in the middle–upper troposphere of the Northern Hemisphere (NH). The CCP had two parts: a wavelike perturbation and a hemispheric perturbation that was almost zonally symmetric. Singular-value decomposition analysis revealed that the zonally symmetric perturbation was coupled to the SST warming trend, whereas the wavelike perturbation was primarily coupled to the interannually varying SST anomaly (SSTA), particularly in the tropical North Pacific, which reached an extreme in 2018. Numerical experiments confirmed that the zonally symmetric component primarily resulted from the SSTA associated with the warming trend, whereas the interannually varying SSTAs in the NH contributed mostly to the wavelike perturbation. The warming trend component of SSTA, especially that in the tropics, compounded by the unusually large SSTAs in 2018, was hypothesized to have contributed to inducing the circumpolar circulation anomaly that caused the record-breaking heat waves in the extratropical NH in 2018.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huang-Hsiung Hsu, hhhsu@gate.sinica.edu.tw
Save