• Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319, https://doi.org/10.1175/JCLI-3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, https://doi.org/10.1002/grl.50208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009: Climate change contributes to more frequent consecutive positive Indian Ocean dipole events. Geophys. Res. Lett., 36, L23704, https://doi.org/10.1029/2009GL040163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean dipole to greenhouse warming. Nat. Geosci., 6, 9991007, https://doi.org/10.1038/ngeo2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2020: Climate impacts of the El Nino–Southern Oscillation on South America. Nat. Rev. Earth Environ., 1, 215231, https://doi.org/10.1038/s43017-020-0040-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., S. K. Behera, and T. Yamagata, 2008: Indian Ocean dipole influence on South American rainfall. Geophys. Res. Lett., 35, L14S12, https://doi.org/10.1029/2008GL034204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A. R. M., and T. Ambrizzi, 2008: The role of the south Indian and Pacific oceans in South American monsoon variability. Theor. Appl. Climatol., 94, 125137, https://doi.org/10.1007/s00704-007-0358-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., Y. Zhang, Q. Cheng, X. S. Liang, and T. Jiang, 2019: Analysis of summer Antarctic sea ice anomalies associated with the spring Indian Ocean dipole. Global Planet. Change, 181, 102982, https://doi.org/10.1016/j.gloplacha.2019.102982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, M. A., V. B. Rao, and M. C. L. Moscati, 2005: South American monsoon indices. Atmos. Sci. Lett., 6, 219223, https://doi.org/10.1002/asl.119.

  • Gandu, A. W., and P. L. Silva Dias, 1998: Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J. Geophys. Res., 103, 60016015, https://doi.org/10.1029/97JD03114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2011: Interannual climate variability in South America: Impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stochastic Environ. Res. Risk Assess., 25, 537554, https://doi.org/10.1007/s00477-010-0420-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. J. Dunstone, A. A. Scaife, D. M. Smith, J. R. Knight, P. Davies, M. Claus, and R. J. Greatbatch, 2020: Predictability of European winter 2019/20: Indian Ocean dipole impacts on the NAO. Atmos. Sci. Lett., 21, e1005, https://doi.org/10.1002/asl.1005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and et al. , 2010: Influence of the state of the Indian Ocean dipole on the following years El Nino. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 444 pp., https://doi.org/10.1017/CBO9780511622977.

    • Crossref
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, C. Yoo, X. Li, D. M. Holland, E. P. Gerber, and C. Yoo, 2015: Rossby waves mediate impacts of tropical oceans on West Antarctic atmospheric circulation in austral winter. J. Climate, 28, 81518164, https://doi.org/10.1175/JCLI-D-15-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E. P., and H. H. Hendon, 2017: Causes and predictability of the negative Indian Ocean dipole and its impact on La Niña during 2016. Sci. Rep., 7, 12619, https://doi.org/10.1038/s41598-017-12674-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., and T. Qian, 2019: A new picture of the global impacts of El Niño–Southern Oscillation. Sci. Rep., 9, 17543, https://doi.org/10.1038/s41598-019-54090-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and H. H. Hendon, 2018: Understanding Rossby wave trains forced by the Indian Ocean dipole. Climate Dyn., 50, 27832798, https://doi.org/10.1007/s00382-017-3771-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenna, S., A. Santoso, A. S. Gupta, A. S. Taschetto, and W. Cai, 2020: Indian Ocean dipole in CMIP5 and CMIP6: Characteristics, biases, and links to ENSO. Sci. Rep., 10, 11500, https://doi.org/10.1038/s41598-020-68268-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, B., W. Cai, and K. Walsh, 2014: The role of the SST-thermocline relationship in Indian Ocean dipole skewness and its response to global warming. Sci. Rep., 4, 6034, https://doi.org/10.1038/srep06034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuncio, M., and K. Satheesan, 2014: Indian Ocean dipole and southern high latitude precipitation: Possible links. Climate Dyn., 43, 19651972, https://doi.org/10.1007/s00382-013-2020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raia, A., and I. F. A. Cavalcanti, 2008: The life cycle of the South American monsoon system. J. Climate, 21, 62276246, https://doi.org/10.1175/2008JCLI2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., A. S. Taschetto, A. Sen Gupta, and G. R. Foltz, 2019: Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci., 12, 620626, https://doi.org/10.1038/s41561-019-0393-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., T. Ambrizzi, and S. E. T. Ferraz, 2005: Indian Ocean dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Oceans, 39, 87101, https://doi.org/10.1016/j.dynatmoce.2004.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sena, A. C. T., and G. Magnusdottir, 2020: Projected end-of-century changes in the South American monsoon in the CESM Large Ensemble. J. Climate, 33, 78597874, https://doi.org/10.1175/JCLI-D-19-0645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., K. Fernandes, and S. J. Camargo, 2015: Two summers of São Paulo drought: Origins in the western tropical Pacific. Geophys. Res. Lett., 42, 10 81610 823, https://doi.org/10.1002/2015GL066314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., and S. C. Park, 2010: Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res., 115, D15112, https://doi.org/10.1029/2009JD013713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., J. Lan, T. Yue Fang, and X. Gao, 2015: A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J. Climate, 28, 50635076, https://doi.org/10.1175/JCLI-D-14-00580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., R. Murtugudde, and A. Kumar, 2016: Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Climate Dyn., 47, 24812500, https://doi.org/10.1007/s00382-016-2977-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, R. Murtugudde, B. Narapusetty, and K. L. Seip, 2019: Covariations between the Indian Ocean dipole and ENSO: A modeling study. Climate Dyn., 53, 57435761, https://doi.org/10.1007/s00382-019-04895-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, https://doi.org/10.1007/s00382-013-1711-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., W. Cai, G. Huang, G. Wang, B. Ng, and S. Li, 2020: Oceanic processes in ocean temperature products key to a realistic presentation of positive Indian Ocean dipole nonlinearity. Geophys. Res. Lett., 47, e2020GL089396, https://doi.org/10.1029/2020GL089396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Z., Y. Tang, D. Chen, L. Zhou, X. Li, T. Lian, and S. Ul Islam, 2016: Assessment of the simulation of Indian Ocean dipole in the CESM—Impacts of atmospheric physics and model resolution. J. Adv. Model. Earth Syst., 8, 19321952, https://doi.org/10.1002/2016MS000700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Yang, W. Zhou, and C. Li, 2008: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 18491859, https://doi.org/10.1002/joc.1678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and S. Nigam, 2015: The Indian Ocean dipole: A monopole in SST. J. Climate, 28, 319, https://doi.org/10.1175/JCLI-D-14-00047.1.

All Time Past Year Past 30 Days
Abstract Views 345 345 124
Full Text Views 82 82 18
PDF Downloads 120 120 26

Influence of the Indian Ocean Dipole on the Large-Scale Circulation in South America

View More View Less
  • 1 a Department of Earth System Science, University of California, Irvine, Irvine, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The influence of each phase of the Indian Ocean dipole (IOD) on the large-scale circulation in South America is investigated using rainfall observations, fully coupled, large-ensemble, historical simulations (LENS), and forced experiments using the coupled model’s atmospheric component. IOD events often occur when El Niño–Southern Oscillation (ENSO), the largest source of interannual variability of precipitation in South America, is active. To distinguish from effects of ENSO, only cases during neutral ENSO conditions are analyzed in LENS and observations. During the positive IOD polarity, a perturbation in the local Walker circulation leads to increased convection over equatorial South America, resulting in wet anomalies in the Amazon basin. This signal is the opposite of what is expected during El Niño events. Tropical convection anomalies in the Indian Ocean also force an extratropical Rossby wave train that reaches subtropical South America. During positive IOD, the moisture flux from the Amazon to central and southeastern Brazil weakens, resulting in a drying of the area associated with the South Atlantic convergence zone. Meanwhile, the South Atlantic subtropical high strengthens, contributing to a drying in southeastern Brazil. During negative IOD, the induced wave train from the Indian Ocean leads to increased moisture transport to the La Plata basin, leading to wet anomalies in the region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana C. T. Sena, athomese@uci.edu

Abstract

The influence of each phase of the Indian Ocean dipole (IOD) on the large-scale circulation in South America is investigated using rainfall observations, fully coupled, large-ensemble, historical simulations (LENS), and forced experiments using the coupled model’s atmospheric component. IOD events often occur when El Niño–Southern Oscillation (ENSO), the largest source of interannual variability of precipitation in South America, is active. To distinguish from effects of ENSO, only cases during neutral ENSO conditions are analyzed in LENS and observations. During the positive IOD polarity, a perturbation in the local Walker circulation leads to increased convection over equatorial South America, resulting in wet anomalies in the Amazon basin. This signal is the opposite of what is expected during El Niño events. Tropical convection anomalies in the Indian Ocean also force an extratropical Rossby wave train that reaches subtropical South America. During positive IOD, the moisture flux from the Amazon to central and southeastern Brazil weakens, resulting in a drying of the area associated with the South Atlantic convergence zone. Meanwhile, the South Atlantic subtropical high strengthens, contributing to a drying in southeastern Brazil. During negative IOD, the induced wave train from the Indian Ocean leads to increased moisture transport to the La Plata basin, leading to wet anomalies in the region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana C. T. Sena, athomese@uci.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.86 MB)
Save