• Bechtold, P., J. P. Chaboureau, A. Beljaars, A. K. Betts, M. Kohler, M. J. Miller, and J. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, https://doi.org/10.1256/qj.03.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J. P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dirmeyer, P. A., and et al. , 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, https://doi.org/10.1007/s00382-011-1127-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and V. T. Phillips, 2003: Boundary layer control on convective available potential energy: Implications for cumulus parameterization. J. Geophys. Res., 108, 4701, https://doi.org/10.1029/2003JD003773.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. M. Caldwell, 2015: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud interactions. J. Climate, 28, 12881307, https://doi.org/10.1175/JCLI-D-14-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J. C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guichard, F., and et al. , 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, https://doi.org/10.1256/qj.03.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2013: TRMM and other data precipitation data set documentation. Global Change Master Directory, NASA, 40 pp., ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc. pdf.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., and et al. , 2019: Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10 km horizontal resolution. Climate Dyn., 53, 65236542, https://doi.org/10.1007/s00382-019-04943-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., and et al. , 2007a: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 18621881, https://doi.org/10.1175/JCLI4090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., and et al. , 2007b: An analysis of the warm-season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, https://doi.org/10.1175/JHM581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., S. D. Schubert, M. J. Suarez, J. E. Schemm, H. Pan, J. Han, and S. Yoo, 2008: Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J. Geophys. Res., 113, D02111, https://doi.org/10.1029/2007JD008984.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and et al. , 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P. L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., D. Mocko, M. I. Lee, W. K. Tao, M. J. Suarez, and R. A. Pielke Sr., 2010: Ten-year climatology of summertime diurnal rainfall rate over the conterminous U.S. Geophys. Res. Lett., 37, L13807, https://doi.org/10.1029/2010GL044139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, https://doi.org/10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and et al. , 2019: An overview of the atmospheric component of the Energy Exascale Earth System Model. J. Adv. Model. Earth Syst., 11, 23772411, https://doi.org/10.1029/2019MS001629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., L. R. Leung, C. D. Burleyson, H. Xiao, and H. Wan, 2018: Role of troposphere–convection–land coupling in the southwestern Amazon precipitation bias of the Community Earth System Model version 1 (CESM1). J. Geophys. Res., 123, 83748399, https://doi.org/10.1029/2018JD028999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and G. J. Zhang, 2017: Improving trigger functions for convective parameterization schemes using GOAmazon observations. J. Climate, 30, 87118726, https://doi.org/10.1175/JCLI-D-17-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suhas, E., and G. J. Zhang, 2014: Evaluation of trigger functions for convective parameterization schemes using observations. J. Climate, 27, 76477666, https://doi.org/10.1175/JCLI-D-13-00718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S., and et al. , 2016: Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment. Atmos. Chem. Phys., 16, 14 24914 264, https://doi.org/10.5194/acp-16-14249-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., X. Liu, C. Hoose, and B. Wang, 2014: Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmos. Chem. Phys., 14, 10 41110 430, https://doi.org/10.5194/acp-14-10411-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. C., H. L. Pan, and H. H. Hsu, 2015: Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res., 120, 10 68110 702, https://doi.org/10.1002/2015JD023337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. C., S. Xie, S. Tang, and W. Lin, 2020: Evaluation of an improved convective triggering function: Observational evidence and SCM tests. J. Geophys. Res. Atmos., 125, 2019JD031651, https://doi.org/10.1029/2019JD031651.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and M. Zhang, 2000: Impact of the convection triggering function on single-column model simulations. J. Geophys. Res., 105, 14 98314 996, https://doi.org/10.1029/2000JD900170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., M. Zhang, J. S. Boyle, R. T. Cederwall, G. L. Potter, and W. Lin, 2004: Impact of a revised convective triggering mechanism on Community Atmosphere Model, version 2, simulations: Results from short-range weather forecasts. J. Geophys. Res., 109, D14102, https://doi.org/10.1029/2004JD004692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and et al. , 2018: Understanding cloud and convective characteristics in version 1 of the E3SM Atmosphere Model. J. Adv. Model. Earth Syst., 10, 26182644, https://doi.org/10.1029/2018MS001350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and et al. , 2019: Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function. J. Adv. Model. Earth Syst., 11, 22902310, https://doi.org/10.1029/2019MS001702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, https://doi.org/10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R., T. Zhou, A. Xiong, Y. Zhu, and J. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, https://doi.org/10.1029/2006GL028129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, https://doi.org/10.1029/2001JD001005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2003: Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. Southern Great Plains. Geophys. Res. Lett., 30, 2281, https://doi.org/10.1029/2003GL018554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X., and et al. , 2019: The summertime precipitation bias in E3SM atmosphere model version 1 over the central United States. J. Geophys. Res., 124, 89358952, https://doi.org/10.1029/2019JD030662.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 225 225 93
Full Text Views 54 54 11
PDF Downloads 71 71 17

Understanding the Roles of Convective Trigger Functions in the Diurnal Cycle of Precipitation in the NCAR CAM5

View More View Less
  • 1 a Department of Earth System Sciences, Tsinghua University, Beijing, China
  • | 2 b Scripps Institution of Oceanography, La Jolla, California
  • | 3 c Lawrence Livermore National Laboratory, Livermore, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The wrong diurnal cycle of precipitation is a common weakness of current global climate models (GCMs). To improve the simulation of the diurnal cycle of precipitation and understand what physical processes control it, we test a convective trigger function described in Xie et al. with additional optimizations in the NCAR Community Atmosphere Model version 5 (CAM5). The revised trigger function consists of three modifications: 1) replacing the convective available potential energy (CAPE) trigger with a dynamic CAPE (dCAPE) trigger, 2) allowing convection to originate above the top of planetary boundary layer [i.e., the unrestricted air parcel launch level (ULL)], and 3) optimizing the entrainment rate and threshold value of the dynamic CAPE generation rate for convection onset based on observations. Results from 1° resolution simulations show that the revised trigger can alleviate the long-standing GCM problem of too early maximum precipitation during the day and missing the nocturnal precipitation peak that is observed in many regions, including the U.S. southern Great Plains (SGP). The revised trigger also improves the simulation of the propagation of precipitation systems downstream of the Rockies and the Amazon region. A further composite analysis over the SGP unravels the mechanisms through which the revised trigger affects convection. Additional sensitivity tests show that both the peak time and the amplitude of the diurnal cycle of precipitation are sensitive to the entrainment rate and dCAPE threshold values.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guang J. Zhang, gzhang@ucsd.edu

Abstract

The wrong diurnal cycle of precipitation is a common weakness of current global climate models (GCMs). To improve the simulation of the diurnal cycle of precipitation and understand what physical processes control it, we test a convective trigger function described in Xie et al. with additional optimizations in the NCAR Community Atmosphere Model version 5 (CAM5). The revised trigger function consists of three modifications: 1) replacing the convective available potential energy (CAPE) trigger with a dynamic CAPE (dCAPE) trigger, 2) allowing convection to originate above the top of planetary boundary layer [i.e., the unrestricted air parcel launch level (ULL)], and 3) optimizing the entrainment rate and threshold value of the dynamic CAPE generation rate for convection onset based on observations. Results from 1° resolution simulations show that the revised trigger can alleviate the long-standing GCM problem of too early maximum precipitation during the day and missing the nocturnal precipitation peak that is observed in many regions, including the U.S. southern Great Plains (SGP). The revised trigger also improves the simulation of the propagation of precipitation systems downstream of the Rockies and the Amazon region. A further composite analysis over the SGP unravels the mechanisms through which the revised trigger affects convection. Additional sensitivity tests show that both the peak time and the amplitude of the diurnal cycle of precipitation are sensitive to the entrainment rate and dCAPE threshold values.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guang J. Zhang, gzhang@ucsd.edu
Save