• Arrigo, K. R., and G. L. van Dijken, 2004: Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res., 108, 3271, https://doi.org/10.1029/2002JC001739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrigo, K. R., G. L. van Dijken, and S. Bushinsky, 2008: Primary production in the Southern Ocean, 1997–2006. J. Geophys. Res., 113, C08004, https://doi.org/10.1029/2007JC004551.

    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belward, A., M. A. Bourassa, M. Dowell, and S. Briggs, 2016: The Global Observing System for climate: Implementation needs GCOS-200, accessed 3 December 2019, https://unfccc.int/files/science/workstreams/systematic_observation/application/pdf/gcos_ip_10oct2016.pdf.

  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea ice expansion. Nat. Geosci., 6, 376379, https://doi.org/10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, and C. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol., 56, 120126, https://doi.org/10.3189/2015AoG69A001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000: Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13, 16741696, https://doi.org/10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2017: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed July 2018, https://doi.org/10.5067/7Q8HCCWS4I0R.

    • Crossref
    • Export Citation
  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, https://doi.org/10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. McClain, C. Sullivan, J. Ryan, and C. L. Leonard, 1993: CZCS pigment concentrations in the Southern Ocean and their relationships to some geophysical parameters. J. Geophys. Res., 98, 24192451, https://doi.org/10.1029/92JC02505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., W. Meier, and R. Gersten, 2017: Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res., 122, 68836900, https://doi.org/10.1002/2017JC012768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 1 December 2020, https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset.

  • Davidson, A. T., 2006: Effects of ultraviolet radiation on microalgal growth. Algal Culture, Analogues of Blooms and Applications, Vol. 2, D. V. Subba Rao, Ed., Science Publishers, 715–768.

  • DeJong, H. B., R. B. Dunbar, and E. A. Lyons, 2018: Late summer frazil ice-associated algal blooms around Antarctica. Geophys. Res. Lett., 45, 826833, https://doi.org/10.1002/2017GL075472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deppeler, S. L., and A. T. Davidson, 2017: Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci., 4, 40, https://doi.org/10.3389/fmars.2017.00040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobrynin, M., J. Murawsky, and S. Yang, 2012: Evolution of the global wind wave climate in CMIP5 experiments. Geophys. Res. Lett., 39, L18606, https://doi.org/10.1029/2012GL052843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., S. L. Garzoli, and M. Baringer, 2009: An assessment of the seasonal mixed layer salinity budget in the Southern Ocean. J. Geophys. Res., 114, C12001, https://doi.org/10.1029/2008JC005258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 25, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y., and et al. , 2010: Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep Sea Res. I, 57, 368383, https://doi.org/10.1016/j.dsr.2009.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 2007: Interdecadal changes in Southern Hemisphere winter storm track modes. Tellus, 59A, 559617, https://doi.org/10.1111/j.1600-0870.2007.00264.x.

    • Search Google Scholar
    • Export Citation
  • Garcia-Eidell, C., J. C. Comiso, E. Dinnat, and L. Brucker, 2017: Satellite observed salinity distributions at high latitudes in the Northern Hemisphere: A comparison of four products. J. Geophys. Res. Oceans, 122, 77177736, https://doi.org/10.1002/2017JC013184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Eidell, C., J. C. Comiso, E. Dinnat, and L. Brucker, 2019: Sea surface salinity distribution in the Southern Ocean as observed from space. J. Geophys. Res. Oceans, 124, 31863205, https://doi.org/10.1029/2018JC014510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, https://doi.org/10.1175/2008JCLI2131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Search Google Scholar
    • Export Citation
  • Hiscock, M. R., and et al. , 2003: Primary productivity and its regulation in the Pacific sector of the Southern Ocean. Deep-Sea Res. II, 50, 533558, https://doi.org/10.1016/S0967-0645(02)00583-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., R. Massom, S. Stammerjohn, P. Reid, G. Williams, and W. Meier, 2016: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change, 143, 228250, https://doi.org/10.1016/j.gloplacha.2016.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

  • Hu, C., Z. Lee, and B. Franz, 2012: Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res., 117, C01011, https://doi.org/10.1029/2011JC007395.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., and J. C. Comiso, 1997: Climate variability in the Amundsen and Bellingshausen Seas. J. Climate, 10, 697709, https://doi.org/10.1175/1520-0442(1997)010<0697:CVITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., C. F. Giulivi, and P. A. Mele, 2002: Freshening of the Ross Sea during the late 20th century. Science, 297, 386389, https://doi.org/10.1126/science.1069574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, https://doi.org/10.1029/JC076i006p01550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, C. R., G. C. Fieldman, and S. B. Hooker, 2004: An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep-Sea Res. II, 51, 542, https://doi.org/10.1016/j.dsr2.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and et al. , 2015: Iron supply and demand in an Antarctic shelf ecosystem. Geophys. Res. Lett., 42, 80888097, https://doi.org/10.1002/2015GL065727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., F. Wentz, and D. Le Vine, 2018: The salinity retrieval algorithms for the NASA Aquarius version 5 and SMAP version 3 releases. Remote Sens., 10, 1121, https://doi.org/10.3390/rs10071121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreau, S., B. Mostajir, S. Bélanger, I. R. Schloss, M. Vancoppenolle, S. Demers, and G. A. Ferreyra, 2015: Climate change enhances primary production in the western Antarctic Peninsula. Global Change Biol., 21, 21912205, https://doi.org/10.1111/gcb.12878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreno, C. M., W. Gong, N. R. Cohen, K. DeLong, and A. Marchetti, 2020: Interactive effects of iron and light limitation on the molecular physiology of the Southern Ocean diatom Fragilariopsis kerguelensis. Limnol. Oceanogr., 65, 15111531, https://doi.org/10.1002/lno.11404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morley, S. A., and et al. , 2020: Global drivers on Southern Ocean ecosystems: Changing physical environments and anthropogenic pressures in an Earth system. Front. Mar. Sci., 7, 547188, https://doi.org/10.3389/fmars.2020.547188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., R. Timmermann, and H. H. Hellmer, 2020: Impact of West Antarctic ice shelf melting on Southern Ocean hydrography. Cryosphere, 14, 22052216, https://doi.org/10.5194/tc-14-2205-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA OBPG, 2014: MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, accessed 4 January 2019, https://doi.org/10.5067/AQUA/MODIS_OC.2014.0.

    • Crossref
    • Export Citation
  • O’Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, 1998: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24 93724 953, https://doi.org/10.1029/98JC02160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA, 116, 14 41414 423, https://doi.org/10.1073/pnas.1906556116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice. J. Geophys. Res., 84, 311337, https://doi.org/10.1029/JC084iC01p00311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, https://doi.org/10.5194/tc-6-871-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., M. H. England, W. Cai, A. Sullivan, and P. J. Durack, 2018: Impacts of broad-scale surface freshening of the Southern Ocean in a coupled climate model. J. Climate, 31, 26132632, https://doi.org/10.1175/JCLI-D-17-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakshaug, E., 1994: Discussant’s report: Primary production in the Antarctic pelagial—A view from the north. Southern Ocean Ecology: The BIOMASS Perspective, S. Z. El-Sayed, Ed., Cambridge University Press, 125–126.

  • Sallée, J.-B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., and et al. , 2004: Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles, 18, GB3003, https://doi.org/10.1029/2003GB002134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, 2014: Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles, 28, 181196, https://doi.org/10.1002/2013GB004743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., and D. M. Nelson, 1985: Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field. Science, 227, 163166, https://doi.org/10.1126/science.227.4683.163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., and D. M. Nelson, 1986: Importance of ice edge phytoplankton production in the Southern Ocean. BioScience, 36, 251257, https://doi.org/10.2307/1310215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., and L. I. Gordon, 1997: Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys. Res. Lett., 24, 233236, https://doi.org/10.1029/96GL03926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., and J. C. Comiso, 2008: The influence of sea ice on primary production in the Southern Ocean: A satellite perspective. J. Geophys. Res., 113, C05S93, https://doi.org/10.1029/2007JC004251.

    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., R. T. Barber, M. R. Hiscock, and J. Marra, 2000: The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res. II, 47, 31193140, https://doi.org/10.1016/S0967-0645(00)00061-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. Tandon, M. Lorenzo, and D. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S., R. Massom, D. Rind, and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L06501, https://doi.org/10.1029/2012GL050874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C. and W. N. Meier. 2018: Sea Ice Trends and Climatologies from SMMR and SSM/I-SSMIS, version 3 [ice extent]. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 30 December 2020, https://doi.org/10.5067/IJ0T7HFHB9Y6.

    • Crossref
    • Export Citation
  • Stroeve, J. C., S. Jenouvrier, G. G. Campbell, C. Barbraud, and K. Delord, 2016: Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels. Cryosphere, 10, 18231843, https://doi.org/10.5194/tc-10-1823-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and I. G. Rigor, 2013: Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett., 40, 48644868, https://doi.org/10.1002/grl.50928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, C. W., C. R. McClain, J. C. Comiso, and W. O. Smith, 1988: Phytoplankton standing crops within an Antarctic ice edge assessed by satellite remote sensing. J. Geophys. Res., 93, 12 48712 498, https://doi.org/10.1029/JC093iC10p12487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. H., M. Losch, and A. Bracher, 2013: On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach. J. Geophys. Res. Oceans, 118, 6375, https://doi.org/10.1029/2012JC008418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernet, M., and et al. , 2008: Primary production within the sea-ice zone west of the Antarctic Peninsula: I—Sea ice, summer mixed layer, and irradiance. Deep-Sea Res. II, 55, 20682085, https://doi.org/10.1016/j.dsr2.2008.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, T. D., L. G. Bennetts, V. A. Squire, D. Dumont, and L. Bertino, 2013: Wave–ice interactions in the marginal ice zone. Part II: Numerical implementation and sensitivity studies along 1D transects of the ocean surfaces. Ocean Modell., 71, 92101, https://doi.org/10.1016/j.ocemod.2013.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodson, C. B., and S. Y. Litvin, 2015: Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. USA, 112, 17101715, https://doi.org/10.1073/pnas.1417143112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., P. E. Land, J. D. Shutler, L. M. Goddijn-Murphy, and C. J. Donlon, 2016: On the calculation of air–sea fluxes of CO2 in the presence of temperature and salinity gradients. J. Geophys. Res. Oceans, 121, 12291248, https://doi.org/10.1002/2015JC011427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., J. S. P. McCain, E. Rowland, R. Middag, M. Sandgren, A. E. Allen, and E. M. Bertrand, 2019: Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. Nat. Commun., 10, 3582, https://doi.org/10.1038/s41467-019-11426-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., J. C. Comiso, C. L. Parkinson, W. J. Campbell, F. D. Darsey, and P. Gloersen, 1983: Antarctic Sea Ice, 1973–1976: Satellite passive-microwave observations. NASA SP-459, 206 pp.

  • Zwally, H. J., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri, and P. Gloersen, 2002: Variability of Antarctic sea ice 1979–1998. J. Geophys. Res., 107, 3041, https://doi.org/10.1029/2000JC000733.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 215 215 45
Full Text Views 74 74 12
PDF Downloads 92 92 13

Interrelationships of Sea Surface Salinity, Chlorophyll-α Concentration, and Sea Surface Temperature near the Antarctic Ice Edge

View More View Less
  • 1 a Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, Illinois
  • | 2 b Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 c KBR, Inc., Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Satellite data can now provide a coherent picture of sea surface salinity (SSS), chlorophyll-α concentration (Chlα), sea surface temperature (SST), and sea ice cover across the Southern Ocean. The availability of these data at the basin scale enables novel insight into the physical and biological processes in an area that has historically been difficult to gather in situ data from. The analysis shows large regional and interannual variability of these parameters but also strong coherence across the Southern Ocean. The covariability of the parameters near the marginal ice zone shows a generally negative relationship between SSS and Chlα (r = −0.87). This may in part be attributed to the large seasonality of the variables, but analysis of data within the spring period (from November to December) shows similarly high correlation (r = −0.81). This is the first time that a large-scale robust connection between low salinity and high phytoplankton concentration during ice melt period has been quantified. Chlorophyll-α concentration is also well correlated with SST (r = 0.79) providing a potential indicator of the strength of the temperature limitation on primary productivity in the region. The observed correlation also varied regionally due to differences in ice melt patterns during spring and summer. Overall, this study provides new insights into the physical characteristics of the Southern Ocean as observed from space. In a continually warming and freshening Southern Ocean, the relationships observed here provide a key data source for testing ocean biogeochemical models and assessing the effect of sea ice–ocean processes on primary production.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Josefino C. Comiso, josefino.c.comiso@nasa.gov

Abstract

Satellite data can now provide a coherent picture of sea surface salinity (SSS), chlorophyll-α concentration (Chlα), sea surface temperature (SST), and sea ice cover across the Southern Ocean. The availability of these data at the basin scale enables novel insight into the physical and biological processes in an area that has historically been difficult to gather in situ data from. The analysis shows large regional and interannual variability of these parameters but also strong coherence across the Southern Ocean. The covariability of the parameters near the marginal ice zone shows a generally negative relationship between SSS and Chlα (r = −0.87). This may in part be attributed to the large seasonality of the variables, but analysis of data within the spring period (from November to December) shows similarly high correlation (r = −0.81). This is the first time that a large-scale robust connection between low salinity and high phytoplankton concentration during ice melt period has been quantified. Chlorophyll-α concentration is also well correlated with SST (r = 0.79) providing a potential indicator of the strength of the temperature limitation on primary productivity in the region. The observed correlation also varied regionally due to differences in ice melt patterns during spring and summer. Overall, this study provides new insights into the physical characteristics of the Southern Ocean as observed from space. In a continually warming and freshening Southern Ocean, the relationships observed here provide a key data source for testing ocean biogeochemical models and assessing the effect of sea ice–ocean processes on primary production.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Josefino C. Comiso, josefino.c.comiso@nasa.gov
Save