• Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7, 211237, https://doi.org/10.1002/wcc.373.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Houze, and B. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian oscillation and westerly wind events. J. Climate, 27, 36193642, https://doi.org/10.1175/JCLI-D-13-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1988: Extratropical forcing and the burst of equatorial westerlies in the western Pacific: A synoptic study. J. Meteor. Soc. Japan, 66, 549564, https://doi.org/10.2151/jmsj1965.66.4_549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. S. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. J. Webster, 2000: Atmospheric and surface variations during westerly wind bursts in the tropical western Pacific. Quart. J. Roy. Meteor. Soc., 126, 899924, https://doi.org/10.1002/qj.49712656407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., and T. Lian, 2018: Assessing the relationship between MJO and equatorial Pacific WWBS in observations and CMIP5 models. J. Climate, 31, 63936410, https://doi.org/10.1175/JCLI-D-17-0526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, M., and E. Tziperman, 2019: Essential ingredients to the dynamics of westerly wind bursts. J. Climate, 32, 55495565, https://doi.org/10.1175/JCLI-D-18-0584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and E. Tziperman, 2009a: Incorporating a semi-stochastic model of ocean-modulated westerly wind bursts into an ENSO prediction model. Theor. Appl. Climatol., 97, 6573, https://doi.org/10.1007/s00704-008-0069-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and E. Tziperman, 2009b: Predictability of SST-modulated westerly wind bursts. J. Climate, 22, 38943909, https://doi.org/10.1175/2009JCLI2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. T. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semi-stochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B., and D. Harrison, 1991: Eastern equatorial Pacific response to three composite westerly wind types. J. Geophys. Res., 96 (Suppl.), 32393248, https://doi.org/10.1029/90JC01861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and B. S. Giese, 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res. Oceans, 96, 32213237, https://doi.org/10.1029/90JC01775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., 1996: Synoptic settings of westerly wind bursts. J. Geophys. Res., 101, 16 99717 019, https://doi.org/10.1029/96JD00030.

  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keen, R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the southern oscillation. Mon. Wea. Rev., 110, 14051416, https://doi.org/10.1175/1520-0493(1982)110<1405:TROCET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10 61310 631, https://doi.org/10.1029/95JC00382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and M. Wheeler, 1995: Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. J. Geophys. Res., 100, 22 98122 997, https://doi.org/10.1029/95JD02415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., G. A. Meehl, and K. M. Weickmann, 1994: Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res., 99, 18 52718 544, https://doi.org/10.1029/94JD01486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753767, https://doi.org/10.1175/1520-0469(1997)054<0753:ATFTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., R. Shirooka, T. Ushiyama, J. Chen, T. Chuda, K. Takeuchi, K. Yoneyama, and M. Katsumata, 2006: Observations of the structures of deep convections and their environment during the active phase of an Madden-Julian oscillation event over the equatorial western Pacific. J. Meteor. Soc. Japan, 84, 115128, https://doi.org/10.2151/jmsj.84.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1990: Evolution of the cloud pattern during the formation of tropical cyclone twins symmetrical with respect to the equator. Mon. Wea. Rev., 118, 11941202, https://doi.org/10.1175/1520-0493(1990)118<1194:EOTCPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., J. Biercamp, and H. von Storch, 1988: The response of a coupled ocean–atmosphere general circulation model to wind bursts. J. Atmos. Sci., 45, 964979, https://doi.org/10.1175/1520-0469(1988)045<0964:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F., F. F. Jin, and M. F. Stuecker, 2017: A simple approach to quantifying the noise–ENSO interaction. Part II: The role of coupling between the warm pool and equatorial zonal wind anomalies. Climate Dyn., 48, 1937, https://doi.org/10.1007/s00382-016-3268-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, X. Liu, J. Feng, and L. Zhou, 2018a: Linkage between westerly wind bursts and tropical cyclones. Geophys. Res. Lett., 45, 11 43111 438, https://doi.org/10.1029/2018GL079745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., Y. Tang, L. Zhou, S. U. Islam, C. Zhang, X. Li, and Z. Ling, 2018b: Westerly wind bursts simulated in CAM4 and CCSM4. Climate Dyn., 50, 13531371, https://doi.org/10.1007/s00382-017-3689-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luther, D. S., D. E. Harrison, and R. A. Knox, 1983: Zonal winds in the central equatorial Pacific and El Niño. Science, 222, 327330, https://doi.org/10.1126/science.222.4621.327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., F. Bahr, Y. Du Penhoat, E. Firing, S. Hayes, P. Niiler, P. Richardson, and J. Toole, 1992: The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. J. Geophys. Res. Oceans, 97, 14 28914 303, https://doi.org/10.1029/92JC01197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. N. Kiladis, K. M. Weickmann, M. Wheeler, D. S. Gutzler, and G. P. Compo, 1996: Modulation of equatorial subseasonal convective episodes by tropical–extratropical interaction in the Indian and Pacific Ocean regions. J. Geophys. Res., 101, 15 03315 049, https://doi.org/10.1029/96JD01014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1997a: The singular vectors of a coupled ocean–atmosphere model of ENSO. I: Thermodynamics, energetics and error growth. Quart. J. Roy. Meteor. Soc., 123, 953981, https://doi.org/10.1002/qj.49712354009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1997b: The singular vectors of a coupled ocean-atmosphere model of ENSO. II: Sensitivity studies and dynamical interpretation. Quart. J. Roy. Meteor. Soc., 123, 9831006, https://doi.org/10.1002/qj.49712354010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12, 29652982, https://doi.org/10.1175/1520-0442(1999)012<2965:TNNOEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 2001: The differences between the optimal perturbations of coupled models of ENSO. J. Climate, 14, 138163, https://doi.org/10.1175/1520-0442(2001)014<0138:TDBTOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1989: Development of a twin cyclone and westerly bursts during the initial phase of the 1986–87 El Niño. J. Meteor. Soc. Japan, 67, 677681, https://doi.org/10.2151/jmsj1965.67.4_677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, C. L., A. M. Moore, J. Zavala-Garay, and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18, 50665085, https://doi.org/10.1175/JCLI3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perigaud, C. M., and C. Cassou, 2000: Importance of oceanic decadal trends and westerly wind bursts for forecasting El Niño. Geophys. Res. Lett., 27, 389392, https://doi.org/10.1029/1999GL010781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 33253345, https://doi.org/10.1175/MWR3477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., and P. D. Sardeshmukh, 2008: A global view of non-Gaussian SST variability. J. Phys. Oceanogr., 38, 639647, https://doi.org/10.1175/2007JPO3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale equatorial Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G., and D. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño and equatorial westerly wind events. J. Climate, 13, 18141830, https://doi.org/10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and T. W. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, https://doi.org/10.1029/2002JC001498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 1996: Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53, 739758, https://doi.org/10.1175/1520-0469(1996)053<0739:AIVATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 227 227 60
Full Text Views 48 48 8
PDF Downloads 65 65 7

A Model Study of the Role of Convection in Westerly Wind Burst Dynamics

View More View Less
  • 1 a Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • | 2 b Department of Earth and Planetary Sciences, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Westerly wind bursts (WWBs) are anomalous surface wind gusts that play an important role in ENSO dynamics. Previous studies have identified several mechanisms that may be involved in the dynamics of WWBs. In particular, many have examined the importance of atmospheric deep convection to WWBs, including convection due to tropical cyclones, equatorial waves, and the Madden–Julian oscillation. Still, the WWB mechanism is not yet fully understood. In this study, we investigate the location of atmospheric convection which leads to WWBs and the role of positive feedbacks involving surface evaporation. We find that disabling surface flux feedbacks a few days before a WWB peaks does not weaken the event, arguing against local surface flux feedbacks serving as a WWB growth mechanism on individual events. On the other hand, directly suppressing convection by inhibiting latent heat release or eliminating surface evaporation rapidly weakens a WWB. By selectively suppressing convection near or farther away from the equator, we find that convection related to off-equatorial cyclonic vortices is most important to equatorial WWB winds, while on-equator convection is unimportant. Despite the strong resemblance of WWB wind patterns to the Gill response to equatorial heating, our findings indicate that equatorial convection is not necessary for WWBs to develop. Our conclusions are consistent with the idea that tropical cyclones, generally occurring more than 5° away from the equator, may be responsible for the majority of WWBs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minmin Fu, mjfu@g.harvard.edu

Abstract

Westerly wind bursts (WWBs) are anomalous surface wind gusts that play an important role in ENSO dynamics. Previous studies have identified several mechanisms that may be involved in the dynamics of WWBs. In particular, many have examined the importance of atmospheric deep convection to WWBs, including convection due to tropical cyclones, equatorial waves, and the Madden–Julian oscillation. Still, the WWB mechanism is not yet fully understood. In this study, we investigate the location of atmospheric convection which leads to WWBs and the role of positive feedbacks involving surface evaporation. We find that disabling surface flux feedbacks a few days before a WWB peaks does not weaken the event, arguing against local surface flux feedbacks serving as a WWB growth mechanism on individual events. On the other hand, directly suppressing convection by inhibiting latent heat release or eliminating surface evaporation rapidly weakens a WWB. By selectively suppressing convection near or farther away from the equator, we find that convection related to off-equatorial cyclonic vortices is most important to equatorial WWB winds, while on-equator convection is unimportant. Despite the strong resemblance of WWB wind patterns to the Gill response to equatorial heating, our findings indicate that equatorial convection is not necessary for WWBs to develop. Our conclusions are consistent with the idea that tropical cyclones, generally occurring more than 5° away from the equator, may be responsible for the majority of WWBs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minmin Fu, mjfu@g.harvard.edu
Save