• Albani, S., and et al. , 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541570, https://doi.org/10.1002/2013MS000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfaro-Sánchez, R., and et al. , 2018: Climatic and volcanic forcing of tropical belt northern boundary over the past 800 years. Nat. Geosci., 11, 933938, https://doi.org/10.1038/s41561-018-0242-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, M. Wickett, T. J. Phillips, D. B. Lobell, C. Delire, and A. Mirin, 2007: Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA, 104, 65506555, https://doi.org/10.1073/pnas.0608998104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkley, A. E., and et al. , 2019: African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci. USA, 116, 16 21616 221, https://doi.org/10.1073/pnas.1906091116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, https://doi.org/10.1002/jgrd.50206.

  • Bonan, G. B., 2016: Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evol. Syst., 47, 97121, https://doi.org/10.1146/annurev-ecolsys-121415-032359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin, 1999: Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491497, https://doi.org/10.1038/17276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, N., F. M. Hoffman, D. M. Lawrence, G. Keppel-Aleks, C. D. Koven, W. J. Riley, M. Mu, and J. T. Randerson, 2018: The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation. J. Adv. Model. Earth Syst., 10, 27312754, https://doi.org/10.1029/2018MS001354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and J. A. Foley, 2000: Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Climate, 13, 1834, https://doi.org/10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and et al. , 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, https://doi.org/10.1029/JC083iC04p01889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and A. Henderson-Sellers, 1988: Modelling tropical deforestation: A study of GCM land-surface parametrizations. Quart. J. Roy. Meteor. Soc., 114, 439462, https://doi.org/10.1002/qj.49711448009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, O. M., N. Riemer, and S. Hameed, 2012: Control of Saharan mineral dust transport to Barbados in winter by the intertropical convergence zone over West Africa. J. Geophys. Res., 117, D19117, https://doi.org/10.1029/2012JD017767.

    • Search Google Scholar
    • Export Citation
  • Du, E., and et al. , 2020: Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci., 13, 221226, https://doi.org/10.1038/s41561-019-0530-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, https://doi.org/10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, L. R., 1990: The role of rock weathering in the phosphorus budget of terrestrial watersheds. Biogeochemistry, 11, 97110, https://doi.org/10.1007/BF00002061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasser, T., and P. Ciais, 2013: A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of “emissions from land-use change.” Earth Syst. Dyn., 4, 171186, https://doi.org/10.5194/esd-4-171-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedney, N., and P. J. Valdes, 2000: The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys. Res. Lett., 27, 30533056, https://doi.org/10.1029/2000GL011794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hättenschwiler, S., B. Aeschlimann, M. M. Coûteaux, J. Roy, and D. Bonal, 2008: High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol., 179, 165175, https://doi.org/10.1111/j.1469-8137.2008.02438.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and V. Gornitz, 1984: Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Climatic Change, 6, 231257, https://doi.org/10.1007/BF00142475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Houghton, R. A., 2005: Tropical deforestation as a source of greenhouse gas emissions. Tropical Deforestation and Climate Change, P. Moutinho and S. Schwartzman, Eds., Amazon Institute for Environmental Research, 13–21.

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and et al. , 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, https://doi.org/10.5194/acp-11-7781-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and et al. , 2020: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev., 13, 54255464, https://doi.org/10.5194/gmd-13-5425-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., Y. Chen, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018: Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Climate Change, 8, 434440, https://doi.org/10.1038/s41558-018-0144-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langenbrunner, B., M. S. Pritchard, G. J. Kooperman, and J. T. Randerson, 2019: Why does Amazon precipitation decrease when tropical forests respond to increasing CO2? Earth’s Future, 7, 450468, https://doi.org/10.1029/2018EF001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2016: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev., 9, 29732998, https://doi.org/10.5194/gmd-9-2973-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J., and D. A. Warrilow, 1989: Simulation of the regional climatic impact of Amazon deforestation. Nature, 342, 411413, https://doi.org/10.1038/342411a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., and et al. , 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, https://doi.org/10.1038/nature10588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., 2007: Anthropocene changes in desert area: Sensitivity to climate model predictions. Geophys. Res. Lett., 34, L18817, https://doi.org/10.1029/2007GL030472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., P. Artaxo, A. R. Baker, T. D. Jickells, G. S. Okin, J. T. Randerson, and A. R. Townsend, 2005: Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochem. Cycles, 19, GB4030, https://doi.org/10.1029/2005GB002541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo, 2006: Change in atmospheric mineral aerosols in response to climate: Last glacier period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111, D10202, https://doi.org/10.1029/2005JD006653.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., and et al. , 2017: Interactions between land use change and carbon cycle feedbacks. Global Biogeochem. Cycles, 31, 96113, https://doi.org/10.1002/2016GB005374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuffie, K., A. Henderson-Sellers, H. Zhang, T. B. Durbidge, and A. J. Pitman, 1995: Global climate sensitivity to tropical deforestation. Global Planet. Change, 10, 97128, https://doi.org/10.1016/0921-8181(94)00022-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medvigy, D., R. L. Walko, and R. Avissar, 2011: Effects of deforestation on spatiotemporal distributions of precipitation in South America. J. Climate, 24, 21472163, https://doi.org/10.1175/2010JCLI3882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, C., C. E. Lambert, F. Dulac, and U. Dayan, 1997: Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature, 387, 691694, https://doi.org/10.1038/42679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okin, G. S., and et al. , 2011: Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. Global Biogeochem. Cycles, 25, GB2022, https://doi.org/10.1029/2010GB003858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2010: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett., 37, L08702, https://doi.org/10.1029/2010GL043010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Klooster, 1993: Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem. Cycles, 7, 811841, https://doi.org/10.1029/93GB02725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and R. T. Nees, 1986: Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 320, 735738, https://doi.org/10.1038/320735a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., R. A. Glaccum, and R. T. Nees, 1981: Atmospheric transport of soil dust from Africa to South America. Nature, 289, 570572, https://doi.org/10.1038/289570a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and A. E. Barkley, C. J. Gaston, A. Gatineau, A. Campos y Sansano, and K. Panechou, 2020: Characterizing and quantifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon basin. Global Biogeochem. Cycles, 34, e2020GB006536, https://doi.org/10.1029/2020GB006536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridley, D. A., C. L. Heald, and B. Ford, 2012: North African dust export and deposition: A satellite and model perspective. J. Geophys. Res., 117, D02202, https://doi.org/10.1029/2011JD016794.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., C. Nobre, and P. Sellers, 1990: Amazon deforestation and climate change. Science, 247, 13221325, https://doi.org/10.1126/science.247.4948.1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., 2010: The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact., 14, https://doi.org/10.1175/2010EI280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., J. C. A. Baker, L. Garcia-Carreras, and J. H. Marsham, 2018: The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour., 43, 193218, https://doi.org/10.1146/annurev-environ-102017-030136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L., M. Longo, R. G. Knox, E. Lee, and P. R. Moorcroft, 2015: Future deforestation in the Amazon and consequences for South American climate. Agric. For. Meteor., 214, 1224, https://doi.org/10.1016/j.agrformet.2015.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swap, R., M. Garstang, S. Greco, R. Talbot, and P. Kållberg, 1992: Saharan dust in the Amazon basin. Tellus, 44B, 133149, https://doi.org/10.3402/tellusb.v44i2.15434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitousek, P. M., 1984: Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285298, https://doi.org/10.2307/1939481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., Y. Balkanski, O. Boucher, P. Ciais, J. Peñuelas, and S. Tao, 2015: Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci., 8, 4854, https://doi.org/10.1038/ngeo2324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R., and M. C. Todd, 2005: Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low level jet. Geophys. Res. Lett., 32, L17701, https://doi.org/10.1029/2005GL023597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R., and et al. , 2009: Dust as a tipping element: The Bodélé Depression, Chad. Proc. Natl. Acad. Sci. USA, 106, 20 56420 571, https://doi.org/10.1073/pnas.0711850106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wassen, M. J., H. O. Venterink, E. D. Lapshina, and F. Tanneberger, 2005: Endangered plants persist under phosphorus limitation. Nature, 437, 547550, https://doi.org/10.1038/nature03950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wedepohl, K. H., 1995: The composition of the continental crust. Geochim. Cosmochim. Acta, 59, 12171232, https://doi.org/10.1016/0016-7037(95)00038-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winckler, J., and et al. , 2019: Different response of surface temperature and air temperature to deforestation in a climate model. Earth Syst. Dyn., 10, 473484, https://doi.org/10.5194/esd-10-473-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and et al. , 2015: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett., 42, 19841991, https://doi.org/10.1002/2015GL063040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zender, C. S., H. Bian, and D. Newman, 2003: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108, 4416, https://doi.org/10.1029/2002JD002775.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 682 682 50
Full Text Views 151 151 26
PDF Downloads 149 149 27

Deforestation Strengthens Atmospheric Transport of Mineral Dust and Phosphorus from North Africa to the Amazon

View More View Less
  • 1 a Department of Earth System Science, University of California, Irvine, Irvine, California
  • | 2 b Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • | 3 c Climate and Global Dynamic Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Phosphorus contained in atmospheric mineral dust aerosol originating from Africa fertilizes tropical forests in Amazonia. However, the mechanisms influencing this nutrient transport pathway remain poorly understood. Here we use the Community Earth System Model to investigate how large-scale deforestation affects mineral dust aerosol transport and deposition in the tropics. We find that the surface biophysical changes that accompany deforestation produce a warmer, drier, and windier surface environment that perturbs atmospheric circulation and enhances long-range dust transport from North Africa to the Amazon. Tropics-wide deforestation weakens the Hadley circulation, which then leads to a northward expansion of the Hadley cell and increases surface air pressure over the Sahara Desert. The high pressure anomaly over the Sahara, in turn, increases northeasterly winds across North Africa and the tropical North Atlantic Ocean, which subsequently increases dust transport to the South American continent. We estimate that the annual atmospheric phosphorus deposition from dust significantly increases by 27% (P < 0.01) in the Amazon under a scenario of complete deforestation. These interactions exemplify how land surface changes can modify tropical nutrient cycling, which, in turn, may have consequences for long-term changes in tropical ecosystem productivity and biodiversity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yue Li, yue.li@uci.edu

Abstract

Phosphorus contained in atmospheric mineral dust aerosol originating from Africa fertilizes tropical forests in Amazonia. However, the mechanisms influencing this nutrient transport pathway remain poorly understood. Here we use the Community Earth System Model to investigate how large-scale deforestation affects mineral dust aerosol transport and deposition in the tropics. We find that the surface biophysical changes that accompany deforestation produce a warmer, drier, and windier surface environment that perturbs atmospheric circulation and enhances long-range dust transport from North Africa to the Amazon. Tropics-wide deforestation weakens the Hadley circulation, which then leads to a northward expansion of the Hadley cell and increases surface air pressure over the Sahara Desert. The high pressure anomaly over the Sahara, in turn, increases northeasterly winds across North Africa and the tropical North Atlantic Ocean, which subsequently increases dust transport to the South American continent. We estimate that the annual atmospheric phosphorus deposition from dust significantly increases by 27% (P < 0.01) in the Amazon under a scenario of complete deforestation. These interactions exemplify how land surface changes can modify tropical nutrient cycling, which, in turn, may have consequences for long-term changes in tropical ecosystem productivity and biodiversity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yue Li, yue.li@uci.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.88 MB)
Save