• Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578599, https://doi.org/10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and R. W. Arritt, 2001: Mesoscale convective systems over the United States during the 1997-98 El Niño. Mon. Wea. Rev., 129, 24432457, https://doi.org/10.1175/1520-0493(2001)129<2443:MCSOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., and W. S. Ashley, 2008: The storm morphology of deadly flooding events in the United States. Int. J. Climatol., 28, 493503, https://doi.org/10.1002/joc.1554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, P. G. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 30033017, https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barimalala, R., F. Desbiolles, R. C. Blamey, and C. J. C. Reason, 2018: Madagascar influence on the South Indian Ocean convergence zone, the Mozambique Channel Trough and southern African rainfall. Geophys. Res. Lett., 45, 11 38011 389, https://doi.org/10.1029/2018GL079964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barimalala, R., R. C. Blamey, F. Desbiolles, and C. J. C. Reason, 2020: Variability in the Mozambique Channel Trough and impacts on southeast African rainfall. J. Climate, 33, 749765, https://doi.org/10.1175/JCLI-D-19-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327330, https://doi.org/10.1029/2000GL011451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blamey, R. C. and C. J. C. Reason, 2009: Numerical simulation of a mesoscale convective system over the east coast of South Africa. Tellus, 61A, 1734, https://doi.org/10.1111/j.1600-0870.2008.00366.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., and C. J. C. Reason, 2012: Mesoscale convective complexes over southern Africa. J. Climate, 25, 753766, https://doi.org/10.1175/JCLI-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., and C. J. C. Reason, 2013: The role of mesoscale convective complexes in southern Africa summer rainfall. J. Climate, 26, 16541668, https://doi.org/10.1175/JCLI-D-12-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., C. Middleton, C. Lennard, and C. J. C. Reason, 2017: A climatology of potential severe convective environments across South Africa. Climate Dyn., 49, 21612178, https://doi.org/10.1007/s00382-016-3434-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., S. R. Kolusu, P. Mahlalela, M. C. Todd, and C. J. C. Reason, 2018: The role of regional circulation features in regulating El Niño climate impacts over southern Africa: A comparison of the 2015/2016 drought with previous events. Int. J. Climatol., 38, 42764295, https://doi.org/10.1002/joc.5668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulard, D., B. Pohl, J. Crétat, N. Vigaud, and T. Pham-Xuan, 2013: Downscaling large-scale climate variability using a regional climate model: The case of ENSO over Southern Africa. Climate Dyn., 40, 11411168, https://doi.org/10.1007/s00382-012-1400-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and N. Dotzek, 2008: The spatial distribution of severe convective storms and an analysis of their secular changes. Climate Extremes and Society, H. F. Diaz and R. J. Murnane, Eds., Cambridge University Press, 35–53.

    • Crossref
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M., and C. Jones, 2001: A satellite method to identify structural properties of mesoscale convective systems based on the maximum spatial correlation tracking technique (MASCOTTE). J. Appl. Meteor., 40, 16831701, https://doi.org/10.1175/1520-0450(2001)040<1683:ASMTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheeks, S. M., S. Fueglistaler, and S. T. Garner, 2020: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems. Mon. Wea. Rev., 148, 26072621, https://doi.org/10.1175/MWR-D-20-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1998: Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems. Quart. J. Roy. Meteor. Soc., 124, 11331162, https://doi.org/10.1002/qj.49712454806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, https://doi.org/10.1175/JAS3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, https://doi.org/10.1175/2010MWR3233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 2001: A Southern Hemisphere wave response to ENSO with implications for southern Africa precipitation. J. Atmos. Sci., 58, 21462162, https://doi.org/10.1175/1520-0469(2001)058<2146:ASHWRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 2020, https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&text=ERA5.

  • Cotton, W. R., M. S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765783, https://doi.org/10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., S. N. Tulich, and G. N. Kiladis, 2012: An object-based approach to assessing the organization of tropical convection. J. Atmos. Sci., 69, 24882504, https://doi.org/10.1175/JAS-D-11-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W., and et al. , 2016: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun., 7, 10925, https://doi.org/10.1038/ncomms10925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driver, P., B. Abiodun, and C. J. C. Reason, 2019: Modelling the precipitation response over southern Africa to the 2009/2010 El Niño using a stretched grid global atmospheric model. Climate Dyn., 52, 39293949, https://doi.org/10.1007/s00382-018-4362-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., and T. L. Mote, 2009: A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol., 30, 418431, https://doi.org/10.1002/joc.1893.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., T. L. Mote, and J. M. Shepherd, 2009: The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Climate, 22, 45904605, https://doi.org/10.1175/2009JCLI2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyson, L. L., J. Van Heerden, and P. D. Sumner, 2015: A baseline climatology of sounding-derived parameters associated with heavy rainfall over Gauteng, South Africa. Int. J. Climatol., 35, 114127, https://doi.org/10.1002/joc.3967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelbrecht, C. J., W. A. Landman, F. A. Engelbrecht, and J. Malherbe, 2015: A synoptic decomposition of rainfall over the Cape south coast of South Africa. Climate Dyn., 44, 25892607, https://doi.org/10.1007/s00382-014-2230-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fauchereau, N., B. Pohl, C. J. C. Reason, M. Rouault, and Y. Richard, 2009: Recurrent daily OLR patterns in the southern Africa/southwest Indian Ocean region, implications for South African rainfall and teleconnections. Climate Dyn., 32, 575591, https://doi.org/10.1007/s00382-008-0426-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favre, A., B. Hewitson, M. Tadross, C. Lennard, and R. Cerezo-Mota, 2012: Relationships between cut-off lows and the semiannual and southern oscillations. Climate Dyn., 38, 14731487, https://doi.org/10.1007/s00382-011-1030-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013: An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens., 51, 43024315, https://doi.org/10.1109/TGRS.2012.2227762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357.

    • Crossref
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and et al. , 2015: The Climate Hazards Infrared Precipitation with Stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., E. Hernández, D. Paredes, D. Barriopedro, J. F. Correoso, and L. Prieto, 2005: A MASCOTTE-based characterization of MCSs over Spain, 2000–2002. Atmos. Res., 73, 261282, https://doi.org/10.1016/j.atmosres.2004.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., B. E. Kelbe, G. D. Emmitt, and W. B. London, 1987: Generation of convective storms over the escarpment of northeastern South Africa. Mon. Wea. Rev., 115, 429443, https://doi.org/10.1175/1520-0493(1987)115<0429:GOCSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett., 33, L23704, https://doi.org/10.1029/2006GL027721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goyens, C., D. Lauwaet, M. Schröder, M. Demuzere, and N. P. Van Lipzig, 2012: Tracking mesoscale convective systems in the Sahel: Relation between cloud parameters and precipitation. Int. J. Climatol., 32, 19211934, https://doi.org/10.1002/joc.2407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 15911606, https://doi.org/10.1175/JCLI-D-18-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, M. S. J., 1984: A generalized classification of South African summer rain-bearing synoptic systems. Int. J. Climatol., 4, 547560, https://doi.org/10.1002/joc.3370040510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, N. C. G., C. J. C. Reason, and N. Fauchereau, 2010: Tropical–extratropical interactions over southern Africa: Three cases of heavy summer season rainfall. Mon. Wea. Rev., 138, 26082623, https://doi.org/10.1175/2010MWR3070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, N. C. G., C. J. C. Reason, and N. Fauchereau, 2013: Cloud bands over southern Africa: Seasonality, contribution to rainfall variability and modulation by the MJO. Climate Dyn., 41, 11991212, https://doi.org/10.1007/s00382-012-1589-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartman, A. T., 2020: Tracking mesoscale convective systems in central equatorial Africa. Int. J. Climatol., 41, 469482, https://doi.org/10.1002/joc.6632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, https://doi.org/10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., D. W. Chappell, G. J. Robinson, and G. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17, 12961312, https://doi.org/10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, 143, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., 17.11–17.54.

    • Crossref
    • Export Citation
  • Huang, X., 2017: A comprehensive Mesoscale Convective System (MSC) dataset, links to files in MatLab and plain text format. Tsinghua University, Beijing, PANGAEA, accessed 12 October 2019, https://doi.org/10.1594/PANGAEA.877914.

    • Crossref
    • Export Citation
  • Huang, X., C. Hu, X. Huang, Y. Chu, Y. H. Tseng, G. J. Zhang, and Y. Lin, 2018: A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. Climate Dyn., 51, 31453159, https://doi.org/10.1007/s00382-018-4071-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118, 283326, https://doi.org/10.1002/qj.49711850406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolios, S., and H. Feidas, 2010: A warm season climatology of mesoscale convective systems in the Mediterranean basin using satellite data. Theor. Appl. Climatol., 102, 2942, https://doi.org/10.1007/s00704-009-0241-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1993a: Mesoscale convective complexes in Africa. Mon. Wea. Rev., 121, 22542263, https://doi.org/10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1993b: Mesoscale convective complexes over the Indian monsoon region. J. Climate, 6, 911919, https://doi.org/10.1175/1520-0442(1993)006<0911:MCCOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, https://doi.org/10.1002/qj.49712353807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 27562776, https://doi.org/10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., J. M. Fritsch, and A. J. Negri, 1999: Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: Estimates from geostationary infrared and passive microwave data. J. Appl. Meteor., 38, 957964, https://doi.org/10.1175/1520-0450(1999)038<0957:COMCCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurent, H., N. d’Amato, and T. Lebel, 1998: How important is the contribution of the mesoscale convective complexes to the Sahelian rainfall? Phys. Chem. Earth, 23, 629633, https://doi.org/10.1016/S0079-1946(98)00099-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindesay, J. A., 1988: South African rainfall, the Southern Oscillation and a Southern Hemisphere semi-annual cycle. J. Climatol., 8, 1730, https://doi.org/10.1002/joc.3370080103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., K. H. Cook, and E. K. Vizy, 2019: The role of mesoscale convective systems in the diurnal cycle of rainfall and its seasonality over sub-Saharan northern Africa. Climate Dyn., 52, 729745, https://doi.org/10.1007/s00382-018-4162-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., K. W. Howard, D. L. Bartels, and D. M. Rodgers, 1986: Mesoscale convective complexes in the middle latitudes. Mesoscale Meteorology and Forecasting, American Meteorological Society, 390–413.

    • Crossref
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, https://doi.org/10.1002/qj.49712757208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, https://doi.org/10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mawren, D., J. Hermes and C. J. C. Reason, 2020: Exceptional tropical cyclone Kenneth in the far northern Mozambique Channel and ocean eddy influences. Geophys. Res. Lett., 47, e2020GL088715, https://doi.org/10.1029/2020GL088715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quart. J. Roy. Meteor. Soc., 128, 19531971, https://doi.org/10.1256/003590002320603485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., and J. P. Duvel, 2008: Synoptic wave perturbations and convective systems over equatorial Africa. J. Climate, 21, 63726388, https://doi.org/10.1175/2008JCLI2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Núñez Ocasio, K. M., J. L. Evans, and G. S. Young, 2020: Tracking mesoscale convective systems that are potential candidates for tropical cyclogenesis. Mon. Wea. Rev., 148, 655669, https://doi.org/10.1175/MWR-D-19-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuryanto, D. E., H. Pawitan, R. Hidayat, and E. Aldrian, 2019: Characteristics of two mesoscale convective systems (MCSs) over the Greater Jakarta: Case of heavy rainfall period 15–18 January 2013. Geosci. Lett., 6, 1, https://doi.org/10.1186/s40562-019-0131-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 16561673, https://doi.org/10.1175/1520-0469(2004)061<1656:SCLWLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrin, G. M., and C. J. C. Reason, 2000: Monsoonal influences on a mesoscale convective system over midlatitude South Australia. Meteor. Atmos. Phys., 74, 6382, https://doi.org/10.1007/s007030070026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Púčik, T., and et al. , 2017: Future changes in European severe convection environments in a regional climate model ensemble. J. Climate, 30, 67716794, https://doi.org/10.1175/JCLI-D-16-0777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rafati, S., and M. Karimi, 2017: Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran. Theor. Appl. Climatol., 129, 539549, https://doi.org/10.1007/s00704-016-1797-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapolaki, R. S., R. C. Blamey, J. C. Hermes, and C. J. C. Reason, 2019: A classification of synoptic weather patterns linked to extreme rainfall over the Limpopo River Basin in southern Africa. Climate Dyn., 53, 22652279, https://doi.org/10.1007/s00382-019-04829-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. M. Chaplin, M. D. Zuluaga, and R. A. Houze Jr., 2016: Contribution of extreme convective storms to rainfall in South America. J. Hydrometeor., 17, 353367, https://doi.org/10.1175/JHM-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2001a: Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett., 28, 22252227, https://doi.org/10.1029/2000GL012735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2001b: Evidence for the influence of the Agulhas Current on regional atmospheric circulation patterns. J. Climate, 14, 27692778, https://doi.org/10.1175/1520-0442(2001)014<2769:EFTIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2002: Sensitivity of the southern African circulation to dipole sea surface temperature patterns in the south Indian Ocean. Int. J. Climatol., 22, 377393, https://doi.org/10.1002/joc.744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and H. Mulenga, 1999: Relationships between South African rainfall and SST anomalies in the southwest Indian Ocean. Int. J. Climatol., 19, 16511673, https://doi.org/10.1002/(SICI)1097-0088(199912)19:15<1651::AID-JOC439>3.0.CO;2-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and A. Keibel, 2004: Tropical cyclone Eline and its unusual penetration and impacts over the southern African mainland. Wea. Forecasting, 19, 789805, https://doi.org/10.1175/1520-0434(2004)019<0789:TCEAIU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and D. Jagadheesha, 2005: A model investigation of recent ENSO impacts over southern Africa. Meteor. Atmos. Phys., 89, 181205, https://doi.org/10.1007/s00703-005-0128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., R. J. Allan, J. A. Lindesay, and T. J. Ansell, 2000: ENSO and climatic signals across the Indian Ocean basin in the global context: Part I, Interannual composite patterns. Int. J. Climatol., 20, 12851327, https://doi.org/10.1002/1097-0088(200009)20:11<1285::AID-JOC536>3.0.CO;2-R.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., W. Landman, and W. Tennant, 2006: Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean. Bull. Amer. Meteor. Soc., 87, 941956, https://doi.org/10.1175/BAMS-87-7-941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, A., and I. Simmonds, 1997: Interannual variability of southeastern African summer rainfall. Part 1: Relationships with air–sea interaction processes. Int. J. Climatol., 17, 235265, https://doi.org/10.1002/(SICI)1097-0088(19970315)17:3<235::AID-JOC123>3.0.CO;2-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., S. A. White, C. J. C. Reason, J. R. E. Lutjeharms, and I. Jobard, 2002: Ocean–atmosphere interaction in the Agulhas Current region and a South African extreme weather event. Wea. Forecasting, 17, 655669, https://doi.org/10.1175/1520-0434(2002)017<0655:OAIITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., C. J. C. Reason, J. R. E. Lutjeharms, and A. C. M. Beljaars, 2003: Underestimation of latent and sensible heat fluxes above the Agulhas Current in NCEP and ECMWF analyses. J. Climate, 16, 776782, https://doi.org/10.1175/1520-0442(2003)016<0776:UOLASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., S. Sen Roy, and R. C. Balling, 2013: The diurnal cycle of rainfall in South Africa in the austral summer. Int. J. Climatol., 33, 770777, https://doi.org/10.1002/joc.3451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singleton, A. T., and C. J. C. Reason, 2006: Numerical simulations of a severe rainfall event over the eastern Cape coast of South Africa: Sensitivity to sea surface temperature and topography. Tellus, 58A, 335367, https://doi.org/10.1111/j.1600-0870.2006.00180.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singleton, A. T., and C. J. C. Reason, 2007: Variability in the characteristics of cut-off low pressure systems over subtropical southern Africa. Int. J. Climatol., 27, 295310, https://doi.org/10.1002/joc.1399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taszarek, M., H. E. Brooks, B. Czernecki, P. Szuster, and K. Fortuniak, 2018: Climatological aspects of convective parameters over Europe: A comparison of ERA-Interim and sounding data. J. Climate, 31, 42814308, https://doi.org/10.1175/JCLI-D-17-0596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. H. Fink, C. Klein, D. J. Parker, F. Guichard, P. P. Harris, and K. R. Knapp, 2018: Earlier seasonal onset of intense mesoscale convective systems in the Congo basin since 1999. Geophys. Res. Lett., 45, 13 45813 467, https://doi.org/10.1029/2018GL080516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, M. C., R. Washington, and P. I. Palmer, 2004: Water vapour transport associated with tropical–temperate trough systems over southern Africa and the southwest Indian Ocean. Int. J. Climatol., 24, 555568, https://doi.org/10.1002/joc.1023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyson, P. D., and R. A. Preston-Whyte, 2000: Weather and Climate of Southern Africa. Oxford University Press, 396 pp.

  • Ukkonen, P., and A. Mäkelä, 2019: Evaluation of machine learning classifiers for predicting deep convection. J. Adv. Model. Earth Syst., 11, 17841802, https://doi.org/10.1029/2018MS001561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, https://doi.org/10.1029/JD092iD08p09591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze Jr., 2016: Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. J. Atmos. Sci., 73, 47534774, https://doi.org/10.1175/JAS-D-16-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weldon, D., and C. J. C. Reason, 2014: Variability of rainfall characteristics over the South Coast region of South Africa. Theor. Appl. Climatol., 115, 177185, https://doi.org/10.1007/s00704-013-0882-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehall, K., and et al. , 2015: Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets. Earth Sci. Inform., 8, 663675, https://doi.org/10.1007/s12145-014-0181-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M., and R. A. Houze Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519, https://doi.org/10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res., 122, 13 28813 307, https://doi.org/10.1002/2017JD027033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., Y. Zhang, J. Sun, S. Fu, and J. Li, 2019: The characteristics and classification of eastward-propagating mesoscale convective systems generated over the second-step terrain in the Yangtze River Valley. Atmos. Sci. Lett., 20, e874, https://doi.org/10.1002/asl.874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., C. Liu, Y. Wang, and M. W. Moncrieff, 2020: Quasi-stationary extreme rain produced by mesoscale convective system on the Mei-Yu front. Meteor. Atmos. Phys., 132, 721742, https://doi.org/10.1007/s00703-019-00717-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1982: Use of a conceptual model of the life cycle of mesoscale convective systems to improve very-short-range forecasts. Nowcasting, K. Browning, Ed., Academic Press, 191–204.

  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 230 230 68
Full Text Views 54 54 16
PDF Downloads 77 77 15

Long-Lived Mesoscale Convective Systems over Eastern South Africa

View More View Less
  • 1 a Department of Oceanography, University of Cape Town, Cape Town, South Africa
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A climatology of large, long-lived mesoscale convective systems (MCSs) over eastern South Africa for the extended austral summer (September–April) from 1985 to 2008 is presented. On average, 63 MCSs occur here in summer, but with considerable interannual variability in frequency. The systems mainly occur between November and March, with a December peak. This seasonal cycle in MCS activity is shown to coincide with favorable CAPE and vertical shear profiles across the domain. Most systems tend to occur along the eastern escarpment and adjacent warm waters of the northern Agulhas Current with a nocturnal life cycle. Typically, initiation begins in the early afternoon, MCS status is reached midafternoon, maximum extent early in the night, and termination around midnight or shortly thereafter. It is found that most MCSs initiate over land, but systems that initiate over the ocean tend to last longer than those that develop over land. The results also show that there are differences in the seasonal cycle between continental and oceanic MCSs, with oceanic systems containing two intraseasonal peaks (December and April). There is a relatively strong positive relationship between the southern annular mode (SAM) and early summer MCS frequency. For the late summer, the frequency of MCSs appears related to the strength of the Mascarene high and Mozambique Channel trough, which modulate the inflow of moisture into eastern South Africa and the stability of the lower atmosphere over the region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dedricks Morake, morakededricks@gmail.com

Abstract

A climatology of large, long-lived mesoscale convective systems (MCSs) over eastern South Africa for the extended austral summer (September–April) from 1985 to 2008 is presented. On average, 63 MCSs occur here in summer, but with considerable interannual variability in frequency. The systems mainly occur between November and March, with a December peak. This seasonal cycle in MCS activity is shown to coincide with favorable CAPE and vertical shear profiles across the domain. Most systems tend to occur along the eastern escarpment and adjacent warm waters of the northern Agulhas Current with a nocturnal life cycle. Typically, initiation begins in the early afternoon, MCS status is reached midafternoon, maximum extent early in the night, and termination around midnight or shortly thereafter. It is found that most MCSs initiate over land, but systems that initiate over the ocean tend to last longer than those that develop over land. The results also show that there are differences in the seasonal cycle between continental and oceanic MCSs, with oceanic systems containing two intraseasonal peaks (December and April). There is a relatively strong positive relationship between the southern annular mode (SAM) and early summer MCS frequency. For the late summer, the frequency of MCSs appears related to the strength of the Mascarene high and Mozambique Channel trough, which modulate the inflow of moisture into eastern South Africa and the stability of the lower atmosphere over the region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dedricks Morake, morakededricks@gmail.com
Save