• Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G., B. Yu, S.-J. Kim, and G. Flato, 2004: Is there observational support for an El Niño-like pattern of future global warming? Geophys. Res. Lett., 31, L06201, https://doi.org/10.1029/2003GL018722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., and et al. , 2020: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate Past, 16, 17771805, https://doi.org/10.5194/cp-16-1777-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and et al. , 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Collins, M., and et al. , 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, A. S. Phillips, and K. A. McKinnon, 2018: How well do we know ENSO’s climate impacts over North America, and how do we evaluate models accordingly? J. Climate, 31, 49915014, https://doi.org/10.1175/JCLI-D-17-0783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fredriksen, H.-B., J. Berner, A. C. Subramanian, and A. Capotondi, 2020: How does El Niño–Southern Oscillation change under global warming—A first look at CMIP6. Geophys. Res. Lett., 47, e2020GL090640, https://doi.org/10.1029/2020GL090640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and P. L. Silva Dias, 1995: Use of barotropic models in the study of the extratropical response to tropical heat sources. J. Meteor. Soc. Japan, 73, 765780, https://doi.org/10.2151/jmsj1965.73.4_765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., H. Bellenger, M. Collins, S. Ferrett, W. Cai, and A. Wittenberg, 2012: A first look at ENSO in CMIP5. CLIVAR Exchanges, No. 17, International CLIVAR Project Office, Southampton, United Kingdom, 29–32.

  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., S.-I. An, Y.-G. Ham, and I.-S. Kang, 2010: Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theor. Appl. Climatol., 100, 275282, https://doi.org/10.1007/s00704-009-0183-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., and C. Deser, 2018: Internal variability and regional climate trends in an observational large ensemble. J. Climate, 31, 67836802, https://doi.org/10.1175/JCLI-D-17-0901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 5660, https://doi.org/10.1038/382056a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779790, https://doi.org/10.1007/s00382-007-0268-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and G. Branstator, 2006: Future changes of El Niño in two global coupled climate models. Climate Dyn., 26, 549566, https://doi.org/10.1007/s00382-005-0098-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, C., C. Li, I. R. Simpson, I. Bethke, M. P. King, and S. Sobolowski, 2020: The change in the ENSO teleconnection under a low global warming scenario and the uncertainty due to internal variability. J. Climate, 33, 48714889, https://doi.org/10.1175/JCLI-D-19-0730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W., and E. Roeckner, 2008: ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Climate Dyn., 31, 533549, https://doi.org/10.1007/s00382-007-0357-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 64816504, https://doi.org/10.1175/JCLI-D-17-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, https://doi.org/10.1038/nature12580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., G. J. van Oldenborgh, W. Hazeleger, and G. Burgers, 2007: On the robustness of ENSO teleconnections. Climate Dyn., 29, 469485, https://doi.org/10.1007/s00382-007-0251-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, https://doi.org/10.1029/2012GL052759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser, and G. Meehl, 2012: Will there be a significant change to El Niño in the twenty-first century? J. Climate, 25, 21292145, https://doi.org/10.1175/JCLI-D-11-00252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, https://doi.org/10.1038/nclimate2341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, https://doi.org/10.5194/os-1-81-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and et al. , 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 320 320 94
Full Text Views 136 136 39
PDF Downloads 161 161 41

Future Changes to El Niño Teleconnections over the North Pacific and North America

View More View Less
  • 1 a College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
  • | 2 b Met Office Hadley Centre, University of Exeter, Exeter, United Kingdom
  • | 3 c Global Systems Institute, University of Exeter, Exeter, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is the leading mode of interannual climate variability, and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 have statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies, which is nevertheless seen in the majority of models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan D. Beverley, j.d.beverley@exeter.ac.uk

Abstract

El Niño–Southern Oscillation (ENSO) is the leading mode of interannual climate variability, and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 have statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies, which is nevertheless seen in the majority of models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan D. Beverley, j.d.beverley@exeter.ac.uk
Save