• Adler, R. F., and et al. , 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and D. Boudra, 1981: Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11, 755770, https://doi.org/10.1175/1520-0485(1981)011<0755:ITOANO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budgell, W. P., 2005: Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dyn., 55, 370387, https://doi.org/10.1007/s10236-005-0008-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caputi, N., M. Kangas, A. Chandrapavan, A. Hart, M. Feng, M. Marin, and S. de Lestang, 2019: Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci., 6, 484, https://doi.org/10.3389/fmars.2019.00484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Li, and D. Wang, 2016: Interannual variability of equatorial eastern Indian Ocean upwelling: Local versus remote forcing. J. Phys. Oceanogr., 46, 789807, https://doi.org/10.1175/JPO-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Climate, 29, 53935416, https://doi.org/10.1175/JCLI-D-15-0730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and et al. , 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Climate, 33, 10 35710 381, https://doi.org/10.1175/JCLI-D-20-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depczynski, M., and et al. , 2013: Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32, 233238, https://doi.org/10.1007/s00338-012-0974-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2013: Predictability of the Ningaloo Niño/Niña. Sci. Rep., 3, 2892, https://doi.org/10.1038/srep02892.

  • Doi, T., S. K. Behera, and T. Yamagata, 2015: An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s. J. Geophys. Res. Oceans, 120, 13881396, https://doi.org/10.1002/2014JC010562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., M. E. Maltrud, S. E. Wijffels, J. A. Church and M. Tomczak. 2007: Simulated Lagrangian pathways between the Leeuwin Current system and the upper-ocean circulation of the Southeast Indian Ocean. Deep-Sea Res., 54, 797817, https://doi.org/10.1016/j.dsr2.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and Y. H. Zhang, 2015: Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean dipole mode. J. Climate, 28, 695713, https://doi.org/10.1175/JCLI-D-14-00435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Qu, and G. Meyers, 2008: Interannual variability of sea surface temperature off Java and Sumatra in a global GCM. J. Climate, 21, 24512465, https://doi.org/10.1175/2007JCLI1753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Zhang, M. Feng, T. Wang, N. Zhang, and S. Wijffels, 2015: Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Sci. Rep., 5, 16050, https://doi.org/10.1038/srep16050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. H. Zhang, and J. C. Shi, 2019: Relationship between sea surface salinity and ocean circulation and climate change. Sci. China Earth Sci., 62, 771782, https://doi.org/10.1007/s11430-018-9276-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and F. Huang, 2005: On the interannual variability of the Indonesian Throughflow and its linkage with ENSO. J. Climate, 18, 14351444, https://doi.org/10.1175/JCLI3322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., S. Wijffels, S. Godfrey, and G. Meyers, 2005: Do eddies play a role in the momentum balance of the Leeuwin Current? J. Phys. Oceanogr., 35, 964975, https://doi.org/10.1175/JPO2730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., L. J. Majewski, C. B. Fandry, and A. M. Waite, 2007: Characteristics of two counter-rotating eddies in the Leeuwin Current system off the Western Australian coast. Deep-Sea Res., 54, 961980, https://doi.org/10.1016/j.dsr2.2006.11.022.

    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. Mcphaden, S. P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., H. H. Hendon, S. P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015a: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104112, https://doi.org/10.1002/2014GL062509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., J. Benthuysen, N. Zhang, and D. Slawinski, 2015b: Freshening anomalies in the Indonesian Throughflow and impacts on the Leeuwin Current during 2010–2011. Geophys. Res. Lett., 42, 85558562, https://doi.org/10.1002/2015GL065848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., and T. Shinoda, 2019: Air–sea heat flux variability in the Southeast Indian Ocean and its relation with Ningaloo Niño. Front. Mar. Sci., 6, 266, https://doi.org/10.3389/fmars.2019.00266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and R. A. Fine, 1996: Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature, 379, 146149, https://doi.org/10.1038/379146a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and et al. , 2010: The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115128, https://doi.org/10.1016/j.dynatmoce.2009.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., S. Ma, D. B. Olson, P. Hacker, A. Ffield, L. D. Talley, D. Wilson, and M. Baringer, 2013: Advection and diffusion of Indonesian Throughflow water within the Indian Ocean South Equatorial Current. Geophys. Res. Lett., 24, 25732576, https://doi.org/10.1029/97GL01061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grunseich, G., B. Subrahmanyam, V. S. N. Murty, and B. S. Giese, 2011: Sea surface salinity variability during the Indian Ocean dipole and ENSO events in the tropical Indian Ocean. J. Geophys. Res. Oceans, 116, C11013, https://doi.org/10.1029/2011JC007456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Li, F. Wang, Y. Wei, and Z. Rong, 2020a: Processes controlling sea surface temperature variability of Ningaloo Niño. J. Climate, 33, 43694389, https://doi.org/10.1175/JCLI-D-19-0698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., Li, Y., Wang, F., Wei, Y., and Xia, Q. 2020b: Importance of resolving mesoscale eddies in the model simulation of Ningaloo Niño. Geophys. Res. Lett., 47, e2020GL087998, https://doi.org/10.1029/2020GL087998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W. Q., G. A. Meehl, B. Rajagopalan, J. T. Fasullo, and A. Hu, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nature Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W. Q., D. Stammer, A. G. Meehl, A. Gerald, A. Hu, F. Sienz, and L. Zhang, 2018: Multi-decadal trend and decadal variability of the regional sea level over the Indian Ocean since the 1960s: Roles of climate modes and external forcing. Climate, 6, 51, https://doi.org/10.3390/cli6020051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2017: Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification. Geophys. Res. Lett., 44, 14481456, https://doi.org/10.1002/2016GL072494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., Y. Zhang, M. Feng, Y. Du, and F. Chai, 2019: Interannual to decadal variability of upper ocean salinity in the southern Indian Ocean and the role of the Indonesian Throughflow. J. Climate, 32, 64036421, https://doi.org/10.1175/JCLI-D-19-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., and et al. , 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, and B. Qiu, 2011: Seasonal modulation of eddy kinetic energy and its formation mechanism in the southeast Indian Ocean. J. Phys. Oceanogr., 41, 657665, https://doi.org/10.1175/2010JPO4436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2005: Internal variability of Indian Ocean SST. J. Climate, 18, 37263738, https://doi.org/10.1175/JCLI3488.1.

  • Jyoti, J., P. Swapna, R. Krishnan, and C. V. Naidu, 2019: Pacific modulation of accelerated south Indian Ocean sea level rise during the early 21st century. Climate Dyn., 53, 44134432, https://doi.org/10.1007/s00382-019-04795-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 14631482, https://doi.org/10.1007/s00382-013-1961-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, and T. Yamagata, 2017: Generation and decay mechanisms of Ningaloo Niño/Niña. J. Geophys. Res. Oceans, 122, 89138932, https://doi.org/10.1002/2017JC012966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., S. Masson, T. Izumo, T. Tozuka, and T. Yamagata, 2018: Can Ningaloo Niño/Niña develop without El Niño–Southern Oscillation? Geophys. Res. Lett., 45, 70407048, https://doi.org/10.1029/2018GL078188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kearney, B. D., 2015: The effects of increased environmental salinity on the ecology, physiology and behaviour of Australian frogs. Ph.D. thesis, Monash University, 172 pp., https://bridges.monash.edu/articles/thesis/The_effects_of_increased_environmental_salinity_on_the_ecology_physiology_and_behaviour_of_Australian_frogs/4712071/1.

  • Kido, S., T. Kataoka, and T. Tozuka, 2016: Ningaloo Niño simulated in the CMIP5 models. Climate Dyn., 47, 14691484, https://doi.org/10.1007/s00382-015-2913-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kido, S., T. Tozuka, and W. Q. Han, 2019a: Anatomy of salinity anomalies associated with the positive Indian Ocean dipole. J. Geophys. Res. Oceans, 124, 81168139, https://doi.org/10.1029/2019JC015163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kido, S., T. Tozuka, and W. Q. Han, 2019b: Experimental assessments on impacts of salinity anomalies on the positive Indian Ocean dipole. J. Geophys. Res. Oceans, 124, 94629486, https://doi.org/10.1029/2019JC015479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4, 16 pp.

  • Li, Y., W. Han, and T. Lee, 2015: Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden–Julian oscillations. J. Geophys. Res. Oceans, 120, 22332258, https://doi.org/10.1002/2014JC010647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, M. Ravichandran, W. Wang, and T. Lee, 2017: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 1. Intraseasonal variability and causes. J. Geophys. Res. Oceans, 122, 42914311, https://doi.org/10.1002/2017JC012691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, L. Zhang, and F. Wang, 2019: Decadal SST variability in the southeast Indian Ocean and its impact on regional climate. J. Climate, 32, 62996318, https://doi.org/10.1175/JCLI-D-19-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. F., C. R. Wu, and Y. S. Han, 2017: A combination mode of climate variability responsible for extremely poor recruitment of the Japanese eel (Anguilla japonica). Sci. Rep., 7, 44 469, https://doi.org/10.1038/srep44469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., T. Yamagata, and J. P. McCreary, 1996: Pacific low-latitude western boundary currents and the Indonesian throughflow. J. Geophys. Res., 101, 12 20912 216, https://doi.org/10.1029/96JC01204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarim, S., J. Sprintall, Z. Liu, W. Yu, A. Santoso, X. H. Yan, and R. D. Susanto, 2019: Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep., 9, 7364, https://doi.org/10.1038/s41598-019-43841-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, H. B., M. Feng, H. E. Phillips, and S. M. Lian, 2019: Mesoscale eddy characteristics in the interior subtropical southeast Indian Ocean, tracked from the Leeuwin Current system. Deep-Sea Res., 161, 5262, https://doi.org/10.1016/j.dsr2.2018.07.003.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, M. Feng, and A. Schiller, 2015: Initiation and amplification of the Ningaloo Niño. Climate Dyn., 45, 23672385, https://doi.org/10.1007/s00382-015-2477-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, S., P. Delecluse, J. P. Boulanger, and C. Menkes, 2002: A model study of the seasonal variability and formation mechanisms of barrier layer in the eastern equatorial Indian Ocean. J. Geophys. Res., 107, 8017, https://doi.org/10.1029/2001JC000832.

    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, C. M. Domingues, and N. L. Bindoff, 2013: Salinity dominance on the Indian Ocean eastern gyral current. Geophys. Res. Lett., 40, 57165721, https://doi.org/10.1002/2013GL057887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Momin, I. M., N. Agarwal, R. Sharma, S. Basu, and V. K. Agarwal, 2010: Impact of satellite-derived precipitation on simulated sea-surface salinity in the tropical Indian Ocean. IEEE Geosci. Remote Sens. Lett., 7, 650654, https://doi.org/10.1109/LGRS.2010.2043921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narayanasetti, S., P. Swapna, K. Ashok, J. Jadhav, and R. Krishnan, 2016: Changes in biological productivity associated with Ningaloo Niño/Niña events in the southern subtropical Indian Ocean in recent decades. Sci. Rep., 6, 27467, https://doi.org/10.1038/srep27467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peliz, A., J. Dubert, D. B. Haidvogel, and B. Le Cann, 2003: Generation and unstable evolution of a density-driven eastern poleward current: The Iberian Poleward Current. J. Geophys. Res., 108, 3268, https://doi.org/10.1029/2002JC001443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., S. E. Wijffels, and M. Feng, 2005: Interannual variability in the freshwater content of the Indonesian-Australian basin. Geophys. Res. Lett., 32, L03603, https://doi.org/10.1029/2004GL021755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., and G. Meyers, 2005: Seasonal variation of barrier layer in the southeastern tropical Indian Ocean. J. Geophys. Res. Oceans, 110, C11003, https://doi.org/10.1029/2004JC002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Z. Lian, X. Nie, and Z. Wei, 2019: Eddy-induced meridional salt flux and its impacts on the sea surface salinity maxima in the southern subtropical oceans. Geophys. Res. Lett., 46, 11 29211 300, https://doi.org/10.1029/2019GL084807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., W. Q. Han, L. Zamudio, and X. Feng, 2020: Influence of atmospheric rivers on the Leeuwin Current system. Climate Dyn., 54, 42634277, https://doi.org/10.1007/s00382-020-05228-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siedler, G., M. Rouault, and J. Lutjeharms, 2006: Structure and origin of the subtropical South Indian Ocean Countercurrent. Geophys. Res. Lett., 33, L24609, https://doi.org/10.1029/2006GL027399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., A. L. Gordon, and M. Visbeck, 2004: Spreading of the Indonesian Throughflow in the Indian Ocean. J. Phys. Oceanogr., 34, 772792, https://doi.org/10.1175/1520-0485(2004)034<0772:SOTITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 73057316, https://doi.org/10.1029/92JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., J. Chong, F. Syamsudin, W. Morawitz, S. Hautala, N. Bray, and S. Wijffels, 1999: Dynamics of the South Java Current in the Indo-Australian basin. Geophys. Res. Lett., 26, 24932496, https://doi.org/10.1029/1999GL002320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenseth, N. C., 2002: Ecological effects of climate fluctuations. Science, 297, 12921296, https://doi.org/10.1126/science.1071281.

  • Susanto, R. D., A. L. Gordon, and Q. Zheng, 2001: Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett., 28, 15991602, https://doi.org/10.1029/2000GL011844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Kataoka, and T. Yamagata, 2014: Locally and remotely forced atmospheric circulation anomalies of Ningaloo Niño/Niña. Climate Dyn., 43, 21972205, https://doi.org/10.1007/s00382-013-2044-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Sebille, E., J. Sprintall, F. U. Schwarzkopf, A. Sen Gupta, A. Santoso, M. H. England, A. Biastoch, and C. W. Böning, 2014: Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. J. Geophys. Res. Oceans, 119, 13651382, https://doi.org/10.1002/2013JC009525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Li, and C. J. Wei, 2020: Subtropical sea surface salinity maxima in the South Indian Ocean. J. Oceanol. Limnol., 38, 1629, https://doi.org/10.1007/s00343-019-8251-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Workman, J. P., and N. E. West, 1967: Germination of Eurotia lanata in relation to temperature and salinity. Ecology, 48, 659661, https://doi.org/10.2307/1936512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., J. Sprintall, M. Fieux, and N. Bray, 2002: The JADE and WOCE I10/IR6 throughflow sections in the Southeast Indian Ocean. Part I: Water mass distribution and variability. Deep-Sea Res., 49, 13411362, https://doi.org/10.1016/S0967-0645(01)00155-2.

    • Search Google Scholar
    • Export Citation
  • Yang, G., X. Zhao, Y. L. Li, L. Liu, F. Wang, and W. D. Yu, 2019: Chlorophyll variability induced by mesoscale eddies in the southeastern tropical Indian Ocean. J. Mar. Syst., 199, 103209, https://doi.org/j.jmarsys.2019.103209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116,C10025, https://doi.org/10.1029/2010JC006937.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and W. Q. Han, 2018: Impact of Ningaloo Niño on tropical Pacific and an interbasin coupling mechanism. Geophys. Res. Lett., 45, 1130011309, https://doi.org/10.1029/2018GL078579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Q. Han, and Y. L. Li, 2018: Mechanisms for generation and development of the Ningaloo Niño. J. Climate, 31, 92399259, https://doi.org/10.1175/JCLI-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., M. Feng, Y. Du, J. Lan, and S. E. Wijffels, 2016: Seasonal and interannual variations of mixed layer salinity in the southeast tropical Indian Ocean. J. Geophys. Res. Oceans, 121, 47164731, https://doi.org/10.1002/2016JC011854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. H., Y. Du, S. J. Zheng, Y. L. Yang, and X. H. Cheng, 2013: Impact of Indian Ocean dipole on the salinity budget in the equatorial Indian Ocean. J. Geophys. Res. Oceans, 118, 49114923, https://doi.org/10.1002/jgrc.20392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. H., Y. Du, and T. D. Qu, 2016: A sea surface salinity dipole mode in the tropical Indian Ocean. Climate Dyn., 47, 25732585, https://doi.org/10.1007/s00382-016-2984-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. H., D. Yan, and M. Feng, 2017: Multiple time scale variability of the sea surface salinity dipole mode in the tropical Indian Ocean. J. Climate, 31, 283296, https://doi.org/10.1175/JCLI-D-17-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, S. J., M. Feng, Y. Du, X. F. Meng, and W. D. Yu, 2018: Interannual variability of eddy kinetic energy in the subtropical southeast Indian Ocean associated with the El Niño–Southern Oscillation. J. Geophys. Res. Oceans, 123, 10481061, https://doi.org/10.1002/2017JC013562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinke, J., A. Rountrey, M. Feng, S. P. Xie, and D. Dissard, 2014: Corals record long-term Leeuwin Current variability including Ningaloo Niño/Niña since 1795. Nat. Commun., 5, 3607, https://doi.org/10.1038/ncomms4607.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 250 250 59
Full Text Views 74 74 9
PDF Downloads 116 116 26

Ocean Salinity Aspects of the Ningaloo Niño

View More View Less
  • 1 a CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
  • | 2 b University of Chinese Academy of Sciences, Beijing, China
  • | 3 c Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • | 4 d Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 5 e CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, China
  • | 6 f Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Ningaloo Niño—the interannually occurring warming episode in the southeast Indian Ocean (SEIO)—has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced freshwater transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward freshwater advection near the eastern boundary, which is critical in causing the strong freshening (>0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with El Niño–Southern Oscillation (0.57, 0.77, and 0.70 with the Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (−0.27, −0.42, and −0.35) during 1993–2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Abstract

Ningaloo Niño—the interannually occurring warming episode in the southeast Indian Ocean (SEIO)—has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced freshwater transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward freshwater advection near the eastern boundary, which is critical in causing the strong freshening (>0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with El Niño–Southern Oscillation (0.57, 0.77, and 0.70 with the Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (−0.27, −0.42, and −0.35) during 1993–2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.33 MB)
Save