• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, L., 2012: Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American monsoon. Global Planet. Change, 92-93, 198208, https://doi.org/10.1016/j.gloplacha.2012.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arias, P. A., R. Fu, C. Vera, and M. Rojas, 2015: A correlated shortening of the North and South American monsoon seasons in the past few decades. Climate Dyn., 45, 31833203, https://doi.org/10.1007/s00382-015-2533-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barron, J. A., S. E. Metcalfe, J. A. Addison, 2012: Response of the North American monsoon to regional changes in ocean surface temperature. Paleoceanography, 27, https://doi.org/10.1029/2011PA002235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., P. Viterbo, M. J. Miller, and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383, https://doi.org/10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., D. J. Gochis, and L. O. Mearns, 2013: Towards assessing NARCCAP regional climate model credibility for the North American monsoon: Current climate simulations. J. Climate, 26, 88028826, https://doi.org/10.1175/JCLI-D-12-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., D. A. Carpenter, and P. J. Weser, 1990: Mechanisms of interannual variability of the southwest United States summer rainfall maximum. J. Climate, 3, 9991015, https://doi.org/10.1175/1520-0442(1990)003<0999:MOIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., T. B. McKee, and R. A. Pielke, 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14, 44494473, https://doi.org/10.1175/1520-0442(2001)014<4449:TROTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., H.-I. Chang, F. Dominguez, C. Carrillo, J.-K. Schemm, and H.-M. H. Juang, 2012: Can a regional climate model improve the ability to forecast the North American monsoon? J. Climate, 25, 82128237, https://doi.org/10.1175/JCLI-D-11-00441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328, https://doi.org/10.1038/nature05053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Yang, J. Qin, L. Zhao, W. Tang, and M. Han, 2013: Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 44664475, https://doi.org/10.1002/jgrd.50301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chug, D., and F. Dominguez, 2019: Isolating the observed influence of vegetation variability on the climate of La Plata River Basin. J. Climate, 32, 44734490, https://doi.org/10.1175/JCLI-D-18-0677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., G. A. Meehl, and J. M. Arblaster, 2012: Monsoon regimes and processes in CCSM4. Part II: African and American monsoon systems. J. Climate, 25, 26092621, https://doi.org/10.1175/JCLI-D-11-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, https://doi.org/10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, M. E., E. A. Collini, and L. J. Ferreira, 2016: Sensitivity of WRF short-term forecasts to different soil moisture initializations from the GLDAS database over South America in March 2009. Atmos. Res., 167, 196207, https://doi.org/10.1016/j.atmosres.2015.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., Q. Hu, and R. J. Oglesby, 2011: Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dyn., 37, 569586, https://doi.org/10.1007/s00382-010-0835-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., M. Bosilovich, P. Houser, and J.-D. Chern, 2013: Impact of land surface conditions on 2004 North American monsoon in GCM experiments. Geophys. Res. Atmos., 118, 293305, https://doi.org/10.1029/2012JD018805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, https://doi.org/10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23, 357, https://doi.org/10.1029/RG023i004p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, https://doi.org/10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and et al. , 2015: The Climate Hazards Infrared Precipitation with Stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. J. Shuttleworth, and Z.-L. Yang, 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130, 12821298, https://doi.org/10.1175/1520-0493(2002)130<1282:SOTMNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and J. W. Preston, 1997: Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett., 24, 22072210, https://doi.org/10.1029/97GL02099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and et al. , 2009: Simulations of the 2004 North American monsoon: NAMAP2. J. Climate, 22, 67166740, https://doi.org/10.1175/2009JCLI3138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Li, and W. Zhou, 2020: Drier North American monsoon in contrast to Asian–African monsoon under global warming. J. Climate, 33, 98019816, https://doi.org/10.1175/JCLI-D-20-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2000: Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States. J. Climate, 13, 759776, https://doi.org/10.1175/1520-0442(2000)013<0759:DFRFIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., K. C. Mo, and Y. Yao, 1998: Interannual variability of the U.S. summer precipitation regime with emphasis on the southwestern monsoon. J. Climate, 11, 25822606, https://doi.org/10.1175/1520-0442(1998)011<2582:IVOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, and C. Hain, 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, https://doi.org/10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, R. R., 1976: The analysis and selection of variables in linear regression. Biometrics, 32, 1, https://doi.org/10.2307/2529336.

  • Jiang, Z., H. Yang, Z. Liu, Y. Wu, and N. Wen, 2014: Assessing the influence of regional SST modes on the winter temperature in China: The effect of tropical Pacific and Atlantic. J. Climate, 27, 868879, https://doi.org/10.1175/JCLI-D-12-00847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and et al. , 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, 1147, https://doi.org/10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmi, V., 2013: Remote sensing of soil moisture. ISRN Soil Sci., 2013, 133, https://doi.org/10.1155/2013/424178.

  • Li, J., X. Gao, R. A. Maddox, and S. Sorooshian, 2005: Sensitivity of North American monsoon rainfall to multisource sea surface temperatures in MM5. Mon. Wea. Rev., 133, 29222939, https://doi.org/10.1175/MWR3011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and Y. Liu, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134148, https://doi.org/10.1175/2007JCLI1826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and et al. , 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., V. Lakshmi, and E. Small, 2003: Links between snow cover, surface skin temperature, and rainfall variability in the North American monsoon system. J. Climate, 16, 18211829, https://doi.org/10.1175/1520-0442(2003)016<1821:LBSCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Méndez-Barroso, L. A., and E. R. Vivoni, 2010: Observed shifts in land surface conditions during the North American monsoon: Implications for a vegetation–rainfall feedback mechanism. J. Arid Environ., 74, 549555, https://doi.org/10.1016/j.jaridenv.2009.09.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, J. D. D., and J. Jin, 2016: Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon. Climate Dyn., 46, 29612976, https://doi.org/10.1007/s00382-015-2744-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, https://doi.org/10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and H.-M. H. Juang, 2003: Relationships between soil moisture and summer precipitation over the Great Plains and the Southwest. J. Geophys. Res., 108, 8610, https://doi.org/10.1029/2002JD002952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolai-Shaw, N., M. Hirschi, H. Mittelbach, and S. I. Seneviratne, 2015: Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data. Geophys. Res. Atmos., 120, 99559964, https://doi.org/10.1002/2015JD023305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., and A. Zarrin, 2011: Sensitivity of the North American monsoon to antecedent Rocky Mountain snowpack. Geophys. Res. Lett., 38, L17403, https://doi.org/10.1029/2011GL048803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., and D. Gutzler, 2012: Simulated impact of vegetation on climate across the North American monsoon region in CCSM3.5. Climate Dyn., 38, 795814, https://doi.org/10.1007/s00382-010-0990-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., F. Wang, and Y. Yu, 2019: Elucidating observed land surface feedbacks across sub-Saharan Africa. Climate Dyn., 53, 17411763, https://doi.org/10.1007/s00382-019-04730-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., F. Wang, Y. Yu, and J. Mao, 2020: Projected changes in the terrestrial and oceanic regulators of climate variability across sub-Saharan Africa. Climate Dyn., 55, 10311057, https://doi.org/10.1007/s00382-020-05308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and et al. , 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett., 28, 139142, https://doi.org/10.1029/2000GL011652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spennemann, P. C., J. A. Rivera, A. C. Saulo, and O. C. Penalba, 2015: A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America. J. Hydrometeor., 16, 158171, https://doi.org/10.1175/JHM-D-13-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J.-Q., 2010: Possible impact of the boreal spring Antarctic oscillation on the North American summer monsoon. Atmos. Oceanogr. Sci. Lett., 3, 232236, https://doi.org/10.1080/16742834.2010.11446870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, https://doi.org/10.1175/JCLI4038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States. Science, 352, 825828, https://doi.org/10.1126/science.aaa7185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallès-Casanova, I., S.-K. Lee, G. R. Foltz, and J. L. Pelegrí, 2020: On the spatiotemporal diversity of Atlantic Niño and associated rainfall variability over West Africa and South America. Geophys. Res. Lett., 47, e2020GL087108, https://doi.org/10.1029/2020GL087108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., K. Tai, and D. J. Gochis, 2009: Effects of initial soil moisture on rainfall generation and subsequent hydrologic response during the North American monsoon. J. Hydrometeor., 10, 644664, https://doi.org/10.1175/2008JHM1069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., V. Naeimi, K. Scipal, R. de Jeu, and J. Martínez-Fernández, 2007: Soil moisture from operational meteorological satellites. Hydrogeol. J., 15, 121131, https://doi.org/10.1007/s10040-006-0104-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Z. Liu, and M. Notaro, 2013: Extracting the dominant SST modes impacting North America’s observed climate. J. Climate, 26, 54345452, https://doi.org/10.1175/JCLI-D-12-00583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., M. Notaro, Z. Liu, and G. Chen, 2014: Observed local and remote influences of vegetation on the atmosphere across North America using a model-validated statistical technique that first excludes oceanic forcings. J. Climate, 27, 362382, https://doi.org/10.1175/JCLI-D-13-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Y. Yu, M. Notaro, J. Mao, X. Shi, and Y. Wei, 2017: Advancing a model-validated statistical method for decomposing the key oceanic drivers of regional climate: Focus on northern and tropical African climate variability in the Community Earth System Model (CESM). J. Climate, 30, 85178537, https://doi.org/10.1175/JCLI-D-17-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., R. L. Bras, and D. Entekhabi, 1997: Structure in fluctuations of large-scale soil moisture climate due to external random forcing and internal feedbacks. Stochastic. Hydrol. Hydraul., 11, 95114, https://doi.org/10.1007/BF02427910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and S. M. Quiring, 2021: Impact of soil moisture initializations on WRF-simulated North American monsoon system. Geophys. Res. Atmos., 126, e2020JD033858, https://doi.org/10.1029/2020JD033858.

    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, Q. Liu, and C. Frankignoul, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate, 23, 17391759, https://doi.org/10.1175/2009JCLI3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, and Q. Liu, 2013: Observational assessment of nonlocal heat flux feedback in the North Atlantic by GEFA. J. Appl. Meteor. Climatol., 52, 645653, https://doi.org/10.1175/JAMC-D-11-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, https://doi.org/10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, T., E. R. Vivoni, and D. J. Gochis, 2018: Influence of initial soil moisture and vegetation conditions on monsoon precipitation events in northwest México. Atmósfera, 31, 2545, https://doi.org/10.20937/ATM.2018.31.01.03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., W. J. Shuttleworth, X. Gao, S. Sorooshian, and E. E. Small, 2004: Soil moisture–precipitation feedback on the North American monsoon system in the MM5-OSU model. Quart. J. Roy. Meteor. Soc., 130, 28732890, https://doi.org/10.1256/qj.03.192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, Z. Liu, L. Wu, and F. Huang, 2009: Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys. Res. Lett., 36, 3661, https://doi.org/10.1029/2009GL039559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., and M. Notaro, 2020: Observed land surface feedbacks on the Australian monsoon system. Climate Dyn., 54, 30213040, https://doi.org/10.1007/s00382-020-05154-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Notaro, F. Wang, J. Mao, X. Shi, and Y. Wei, 2017: Observed positive vegetation–rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun., 8, 1873, https://doi.org/10.1038/s41467-017-02021-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Notaro, F. Wang, J. Mao, X. Shi, and Y. Wei, 2018: Validation of a statistical methodology for extracting vegetation feedbacks: Focus on North African ecosystems in the Community Earth System Model. J. Climate, 31, 15651586, https://doi.org/10.1175/JCLI-D-17-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W.-C. Wang, and J. Wei, 2008: Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, 5024, https://doi.org/10.1029/2008JD009807.

    • Search Google Scholar
    • Export Citation
  • Zhong, Y., Z. Liu, and M. Notaro, 2011: A GEFA assessment of observed global ocean influence on U.S. precipitation variability: Attribution to regional SST variability modes. J. Climate, 24, 693707, https://doi.org/10.1175/2010JCLI3663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., and D. P. Lettenmaier, 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J. Climate, 20, 19361946, https://doi.org/10.1175/JCLI4086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., L. R. Leung, D. Gochis, Y. Qian, and D. P. Lettenmaier, 2010: Evaluating the influence of antecedent soil moisture on variability of the North American monsoon precipitation in the Coupled MM5/VIC modeling system. J. Adv. Model. Earth Syst., 2, 13, https://doi.org/10.3894/JAMES.2009.1.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 166 166 24
Full Text Views 49 49 10
PDF Downloads 67 67 12

Observed Influence of Soil Moisture on the North American Monsoon: An Assessment Using the Stepwise Generalized Equilibrium Feedback Assessment Method

View More View Less
  • 1 a Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The evidence shows that soil moisture has an important influence on North American monsoon (NAM) precipitation. This study evaluates the local and nonlocal feedbacks of soil moisture on summer (June–September) precipitation in the NAM region using observational data. We applied a multivariate statistical method known as the Stepwise Generalized Equilibrium Feedback Assessment (SGEFA) to control for internal atmospheric variability and sea surface temperature (SST) forcings so that we could isolate the impact of soil moisture feedbacks on NAM precipitation. Our results identify feedback pathways between soil moisture and precipitation in the NAM region and in the southern Rocky Mountains (SRM) region. Wet soils in the SRM result in lower-than-normal local surface temperature, weaker water vapor transport from the eastern Pacific and the Gulf of California (GOC), and less monsoon precipitation. Precipitation over the U.S. Great Plains also significantly increases when there are wet soils in the SRM. This occurs due to an enhanced water vapor influx into this region. On the other hand, anomalously wet soils in the NAM region increase NAM precipitation by enhancing local moist static energy and increasing the strength of the monsoonal circulation. Our observational results using SGEFA agree well with previous numerical modeling studies. This study highlights the critical role of land–atmosphere interactions for understanding NAM variability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuechun Wang, wang.8869@osu.edu

Abstract

The evidence shows that soil moisture has an important influence on North American monsoon (NAM) precipitation. This study evaluates the local and nonlocal feedbacks of soil moisture on summer (June–September) precipitation in the NAM region using observational data. We applied a multivariate statistical method known as the Stepwise Generalized Equilibrium Feedback Assessment (SGEFA) to control for internal atmospheric variability and sea surface temperature (SST) forcings so that we could isolate the impact of soil moisture feedbacks on NAM precipitation. Our results identify feedback pathways between soil moisture and precipitation in the NAM region and in the southern Rocky Mountains (SRM) region. Wet soils in the SRM result in lower-than-normal local surface temperature, weaker water vapor transport from the eastern Pacific and the Gulf of California (GOC), and less monsoon precipitation. Precipitation over the U.S. Great Plains also significantly increases when there are wet soils in the SRM. This occurs due to an enhanced water vapor influx into this region. On the other hand, anomalously wet soils in the NAM region increase NAM precipitation by enhancing local moist static energy and increasing the strength of the monsoonal circulation. Our observational results using SGEFA agree well with previous numerical modeling studies. This study highlights the critical role of land–atmosphere interactions for understanding NAM variability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuechun Wang, wang.8869@osu.edu
Save