• Allen, R. J., and R. Luptowitz, 2017: El Niño-like teleconnection increases California precipitation in response to warming. Nat. Commun., 8, 16055, https://doi.org/10.1038/ncomms16055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci., 2, 341343, https://doi.org/10.1038/ngeo467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. W., N. Cressie, X. Qu, and A. Hall, 2018: A hierarchical statistical framework for emergent constraints: Application for snow-albedo feedback. Geophys. Res. Lett., 45, 13 05013 059, https://doi.org/10.1029/2018GL080082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2013: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J. Climate, 26, 669678, https://doi.org/10.1175/JCLI-D-12-00537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., C. R. Holmes, J. S. Hosking, G. J. Marshall, M. Osman, M. Patterson, and T. Rackow, 2020: Improvements in circumpolar Southern Hemisphere extratropical atmospheric circulation in CMIP6 compared to CMIP5. Earth Space Sci., 7, e2019EA001065, https://doi.org/10.1029/2019EA001065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., 2020: Reducing uncertainties in climate projections with emergent constraints: Concepts, examples and prospects. Adv. Atmos. Sci., 37 (1), 115, https://doi.org/10.1007/s00376-019-9140-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, L., A. G. Pendergrass, F. Lehner, A. L. Merrifield, R. Lorenz, and R. Knutti, 2020: Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn., 11, 9951012, https://doi.org/10.5194/esd-11-995-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., C. S. Bretherton, M. D. Zelinka, S. A. Klein, B. D. Santer, and B. M. Sanderson, 2014: Statistical significance of climate sensitivity predictors obtained by data mining. Geophys. Res. Lett., 41, 18031808, https://doi.org/10.1002/2014GL059205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., M. D. Zelinka, and S. A. Klein, 2018: Evaluating emergent constraints on equilibrium climate sensitivity. J. Climate, 31, 39213941, https://doi.org/10.1175/JCLI-D-17-0631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., T. Zhou, P. Wu, Z. Guo, and M. Wang, 2020: Emergent constraints on future projections of the western North Pacific subtropical high. Nat. Commun., 11, 2802, https://doi.org/10.1038/s41467-020-16631-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344, https://doi.org/10.1038/nature11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., C. Huntingford, and M. S. Williamson, 2018: Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 553, 319322, https://doi.org/10.1038/nature25450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, P. E., P. Ceppi, and G. Zappa, 2020: Role of the mean state for the Southern Hemispheric jet stream response to CO2 forcing in CMIP6 models. Environ. Res. Lett., 15, 064011, https://doi.org/10.1088/1748-9326/ab8331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., 2020: Certain uncertainty: The role of internal climate variability in projections of regional climate change and risk management. Earth’s Future, 8, e2020EF001854, https://doi.org/10.1029/2020EF001854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and et al. , 2020: Insights from Earth system model initial condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Tayler, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2012: A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science, 338, 792794, https://doi.org/10.1126/science.1227465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constraint snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, https://doi.org/10.1029/2005GL025127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., R. Cox, C. Huntingford, and S. Klein, 2019: Progressing emergent constraints on future climate change. Nat. Climate Change, 9, 269278, https://doi.org/10.1038/s41558-019-0436-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, J. C., J. D. Annan, M. Yoshimori, and A. Abe-Ouchi, 2012: Can the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett., 39, L24702, https://doi.org/10.1029/2012GL053872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Huang, B., and et al. , 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., I. Mahlstein, M. Wild, J. Fasullo, and R. Knutti, 2010: Constraints on climate sensitivity from radiation patterns in climate models. J. Climate, 24 10341052, https://doi.org/10.1175/2010JCLI3403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., H. Shiogama, M. Watanabe, T. Ogura, T. Yokohata, and M. Kimoto, 2016: Lower-tropospheric mixing as a constraint on cloud feedback in a multiparameter multiphysics ensemble. J. Climate, 29, 62596275, https://doi.org/10.1175/JCLI-D-16-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, https://doi.org/10.1029/2010GL042873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriegler, E., and et al. , 2017: Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environ. Change, 42, 297315, https://doi.org/10.1016/j.gloenvcha.2016.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwiatkowski, L., L. Bopp, O. Aumont, P. Ciais, P. M. Cox, C. Laufkötter, Y. Li, and R. Séférian, 2017: Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Climate Change, 7, 355358, https://doi.org/10.1038/nclimate3265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively active gases and aerosols in the representative concentration pathways. Climatic Change, 109, 191212, https://doi.org/10.1007/s10584-011-0155-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. W. Wood, J. A. Vano, D. M. Lawrence, M. P. Clark, and J. S. Makin, 2019: The potential to reduce uncertainty in regional runoff projections from climate models. Nat. Climate Change, 9, 926933, https://doi.org/10.1038/s41558-019-0639-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, N. Maher, J. Marotzke, E. Fischer, L. Brunner, R. Knutti, and E. Hawkins, 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn., 11, 491508, https://doi.org/10.5194/esd-11-491-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, C. He, and Z. S. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Climate Change, 7, 708712, https://doi.org/10.1038/nclimate3387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipat, B. R., G. Tselioudis, K. M. Grise, and L. M. Polvani, 2017: CMIP5 models’ shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent. Geophys. Res. Lett., 44, 57395748, https://doi.org/10.1002/2017GL073151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., N. Herger, J. Sedlacek, V. Eyring, E. M. Fischer, and R. Knutti, 2018: Prospects and caveats for weighting climate models for summer maximum temperature projections over North America. J. Geophys. Res. Atmos., 123, 45094526, https://doi.org/10.1029/2017JD027992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, https://doi.org/10.5194/tc-6-1383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., 2015: Understanding and predicting temperature variability in the observational record. Ph.D. thesis, Harvard University, 143 pp., https://dash.harvard.edu/handle/1/17463140.

  • Meinshausen, M., and et al. , 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, https://doi.org/10.1038/ngeo1568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C. O., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. van Vuuren, 2013: A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122, 387400, https://doi.org/10.1007/s10584-013-0905-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renoult, M., and et al. , 2020: A Bayesian framework for emergent constraints: Case studies of climate sensitivity with PMIP. Climate Past Discuss., 16, 17151735, https://doi.org/10.5194/cp-16-1715-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2018: Statistical inference with emergent constraints. Caltech Climate Dynamics Group blog, 24 January 2018, https://climate-dynamics.org/statistical-inference-with-emergent-constraints/.

  • Shepherd, T. G., and et al. , 2018: Storylines: An alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change, 151, 555571, https://doi.org/10.1007/s10584-018-2317-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43, 28962903, https://doi.org/10.1002/2016GL067989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, M. Ting, and T. A. Shaw, 2016: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Climate Change, 6, 6570, https://doi.org/10.1038/nclimate2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S., and et al. , 2010: Impact of stratospheric ozone on the Southern Hemisphere circulation changes: A multimodel assessment. J. Geophys. Res. Atmos., 115, 155, https://doi.org/10.1029/2010JD014271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., J. H. Jiang, C. Zhai, T. Shen, J. D. Neelin, G. L. Stephens, and Y. L. Yung, 2014: Weakening and strengthening structures in the Hadley circulation change under global warming and implications for cloud response and climate sensitivity. J. Geophys. Res., 119, 57875805, https://doi.org/10.1002/2014JD021642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., 2015: Spread of model climate sensitivity linked to double-intertropical convergence zone bias. Geophys. Res. Lett., 42, 41334141, https://doi.org/10.1002/2015GL064119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokarska, K. B., M. B. Stope, S. Sippel, E. M. Fischer, C. J. Smith, F. Lehner, and R. Knutti, 2020: Past warming trend constraints future warming in CMIP6 models. Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Niekerk, A., J. F. Scinocca, and T. G. Shepherd, 2017: The modulation of stationary waves, and their response to climate change, by parameterized orographic draft. J. Atmos. Sci., 74, 25572574, https://doi.org/10.1175/JAS-D-17-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., 2008: Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models. Izv. Atmos. Oceanogr. Phys., 44, 288299, https://doi.org/10.1134/S0001433808030043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagman, B. M., and C. S. Jackson, 2018: A test of emergent constraints on cloud feedback and climate sensitivity using a calibrated single model ensemble. J. Climate, 31, 75157532, https://doi.org/10.1175/JCLI-D-17-0682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenzel, S., P. M. Cox, V. Eyring, and P. Friedlingstein, 2014: Emergent constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system models. J. Geophys. Res. Biogeosci., 119, 794807, https://doi.org/10.1002/2013JG002591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. B., and P. G. Sansom, 2019: How are emergent constraints quantifying uncertainty and what do they leave behind? Bull. Amer. Meteor. Soc., 100, 25712588, https://doi.org/10.1175/BAMS-D-19-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, C., J. H. Jiang, and H. Su, 2015: Long-term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity. Geophys. Res. Lett., 42, 87298737, https://doi.org/10.1002/2015GL065911.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 388 388 61
Full Text Views 154 154 32
PDF Downloads 199 199 33

Emergent Constraints on the Large-Scale Atmospheric Circulation and Regional Hydroclimate: Do They Still Work in CMIP6 and How Much Can They Actually Constrain the Future?

View More View Less
  • 1 a Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 2 b Department of Statistics, Institute of the Environment, University of California, Los Angeles, Los Angeles, California
  • | 3 c Department of Earth System Science, Stanford University, Stanford, California
  • | 4 d Boulder, Colorado
  • | 5 e Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • | 6 f George Mason University, Fairfax, Virginia
  • | 7 g Atmospheric and Oceanic Sciences, University of California, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An emergent constraint (EC) is a statistical relationship, across a model ensemble, between a measurable aspect of the present-day climate (the predictor) and an aspect of future projected climate change (the predictand). If such a relationship is robust and understood, it may provide constrained projections for the real world. Here, models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) are used to revisit several ECs that were proposed in prior model intercomparisons with two aims: 1) to assess whether these ECs survive the partial out-of-sample test of CMIP6 and 2) to more rigorously quantify the constrained projected change than previous studies. To achieve the latter, methods are proposed whereby uncertainties can be appropriately accounted for, including the influence of internal variability, uncertainty on the linear relationship, and the uncertainty associated with model structural differences, aside from those described by the EC. Both least squares regression and a Bayesian hierarchical model are used. Three ECs are assessed: (i) the relationship between Southern Hemisphere jet latitude and projected jet shift, which is found to be a robust and quantitatively useful constraint on future projections; (ii) the relationship between stationary wave amplitude in the Pacific–North American sector and meridional wind changes over North America (with extensions to hydroclimate), which is found to be robust but improvements in the predictor in CMIP6 result in it no longer substantially constraining projected change in either circulation or hydroclimate; and (iii) the relationship between ENSO teleconnections to California and California precipitation change, which does not appear to be robust when using historical ENSO teleconnections as the predictor.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isla R. Simpson, islas@ucar.edu

Abstract

An emergent constraint (EC) is a statistical relationship, across a model ensemble, between a measurable aspect of the present-day climate (the predictor) and an aspect of future projected climate change (the predictand). If such a relationship is robust and understood, it may provide constrained projections for the real world. Here, models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) are used to revisit several ECs that were proposed in prior model intercomparisons with two aims: 1) to assess whether these ECs survive the partial out-of-sample test of CMIP6 and 2) to more rigorously quantify the constrained projected change than previous studies. To achieve the latter, methods are proposed whereby uncertainties can be appropriately accounted for, including the influence of internal variability, uncertainty on the linear relationship, and the uncertainty associated with model structural differences, aside from those described by the EC. Both least squares regression and a Bayesian hierarchical model are used. Three ECs are assessed: (i) the relationship between Southern Hemisphere jet latitude and projected jet shift, which is found to be a robust and quantitatively useful constraint on future projections; (ii) the relationship between stationary wave amplitude in the Pacific–North American sector and meridional wind changes over North America (with extensions to hydroclimate), which is found to be robust but improvements in the predictor in CMIP6 result in it no longer substantially constraining projected change in either circulation or hydroclimate; and (iii) the relationship between ENSO teleconnections to California and California precipitation change, which does not appear to be robust when using historical ENSO teleconnections as the predictor.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isla R. Simpson, islas@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 272.27 KB)
Save