• Aemisegger, F., 2018: On the link between the North Atlantic storm track and precipitation deuterium excess in Reykjavik. Atmos. Sci. Lett., 19, e865, https://doi.org/10.1002/asl.865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aemisegger, F., and L. Papritz, 2018: A climatology of strong large-scale ocean evaporation events. Part I: Identification, global distribution, and associated climate conditions. J. Climate, 31, 72877312, https://doi.org/10.1175/JCLI-D-17-0591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Annan, J., and J. Hargreaves, 2015: A perspective on model–data surface temperature comparison at the Last Glacial Maximum. Quat. Sci. Rev., 107, 110, https://doi.org/10.1016/j.quascirev.2014.09.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, A., E. Posmentier, and X. Feng, 2018: Patterns of evaporation and precipitation drive global isotopic changes in atmospheric moisture. Geophys. Res. Lett., 45, 70937101, https://doi.org/10.1029/2018GL078254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. Van Oldenborgh, and C. A. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol., 56, 120126, https://doi.org/10.3189/2015AoG69A001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8, 225239, https://doi.org/10.1007/BF00198617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., K. C. Armour, G. H. Roe, N. Siler, and N. Feldl, 2018: Sources of uncertainty in the meridional pattern of climate change. Geophys. Res. Lett., 45, 91319140, https://doi.org/10.1029/2018GL079429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, E. A., 1997: Cool tropical temperatures shift the global δ18O–T relationship: An explanation for the ice core δ18O–borehole thermometry conflict? Geophys. Res. Lett., 24, 273276, https://doi.org/10.1029/97GL00081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizert, C., and et al. , 2014: Greenland temperature response to climate forcing during the last deglaciation. Science, 345, 11771180, https://doi.org/10.1126/science.1254961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizert, C., and et al. , 2021: Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 372, 10971101, https://doi.org/10.1126/science.abd2897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, C. D., D. Rind, J. Jouzel, R. D. Koster, and R. G. Fairbanks, 1994: Glacial-interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate. Science, 263, 508511, https://doi.org/10.1126/science.263.5146.508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and J. Jouzel, 1994: Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes. J. Geophys. Res., 99, 16 793, https://doi.org/10.1029/94JD00412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, H., and L. Gordon, 1965: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi, Ed., Università di Pisa Laboratorio di geologia nucleare, 9–130.

  • Cuffey, K. M., R. B. Alley, P. M. Grootes, J. M. Bolzan, and S. Anandakrishnan, 1994: Calibration of the δ18O isotopic paleothermometer for central Greenland, using borehole temperatures. J. Glaciol., 40, 341349, https://doi.org/10.1017/S0022143000007425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., G. D. Clow, R. B. Alley, M. Stuiver, E. D. Waddington, and R. W. Saltus, 1995: Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270, 455458, https://doi.org/10.1126/science.270.5235.455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., and et al. , 2016: Deglacial temperature history of West Antarctica. Proc. Natl. Acad. Sci. USA, 113, 14 24914 254, https://doi.org/10.1073/pnas.1609132113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Johnsen, A. W. Hansen, and N. Balling, 1998: Past temperatures directly from the Greenland Ice Sheet. Science, 282, 268271, https://doi.org/10.1126/science.282.5387.268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, https://doi.org/10.3402/tellusa.v16i4.8993.

  • Fisher, D. A., 1990: A zonally-averaged stable-isotope model coupled to a regional variable-elevation stable-isotope model. Ann. Glaciol., 14, 6571, https://doi.org/10.3189/S0260305500008284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., H. C. Steen-Larsen, R. D. Field, J. Worden, C. Risi, and M. Schneider, 2016: Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys., 54, 809865, https://doi.org/10.1002/2015RG000512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, and J. Jouzel, 1993: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552554, https://doi.org/10.1038/366552a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoffmann, G., M. Werner, and M. Heimann, 1998: Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. J. Geophys. Res., 103, 16 87116 896, https://doi.org/10.1029/98JD00423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., W. Dansgaard, and J. W. C. White, 1989: The origin of Arctic precipitation under present and glacial conditions. Tellus, 41B, 452468, https://doi.org/10.1111/j.1600-0889.1989.tb00321.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, 1995: Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus, 47B, 624629, https://doi.org/10.3402/tellusb.v47i5.16077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., and et al. , 2001: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci., 16, 299307, https://doi.org/10.1002/jqs.622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and L. Merlivat, 1984: Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res., 89, 11 749, https://doi.org/10.1029/JD089iD07p11749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and et al. , 1997: Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. Oceans, 102, 26 47126 487, https://doi.org/10.1029/97JC01283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouzel, J., F. Vimeux, N. Caillon, G. Delaygue, G. Hoffmann, V. Masson-Delmotte, and F. Parrenin, 2003: Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. J. Geophys. Res., 108, 4361, https://doi.org/10.1029/2002JD002677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavanaugh, J. L., and K. M. Cuffey, 2003: Space and time variation of δ18O and δD in Antarctic precipitation revisited. Global Biogeochem. Cycles, 17, 1017, https://doi.org/10.1029/2002GB001910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindler, P., M. Guillevic, M. Baumgartner, J. Schwander, A. Landais, and M. Leuenberger, 2014: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate Past, 10, 887902, https://doi.org/10.5194/cp-10-887-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., C. Genthon, and J. Jouzel, 1997: GCM analysis of local influences on ice core δ signals. Geophys. Res. Lett., 24, 28252828, https://doi.org/10.1029/97GL52891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landais, A., E. Barkan, and B. Luz, 2008: Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett., 35, L02709, https://doi.org/10.1029/2007GL032096.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., I. Fung, D. J. DePaolo, and B. Otto-Bliesner, 2008: Water isotopes during the Last Glacial Maximum: New general circulation model calculations. J. Geophys. Res. Atmos., 113, D19109, https://doi.org/10.1029/2008JD009859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majoube, M., 1970: Fractionation factor of 18O between water vapour and ice. Nature, 226, 1242, https://doi.org/10.1038/2261242a0.

  • Majoube, M., 1971: Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. J. Chim. Phys., 68, 14231436, https://doi.org/10.1051/jcp/1971681423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markle, B. R., 2017: Climate dynamics revealed in ice cores: Advances in techniques, theory, and interpretation. Ph.D. thesis, University of Washington, 214 pp.

  • Masson-Delmotte, V., 2005: GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 309, 118121, https://doi.org/10.1126/science.1108575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and et al. , 2006: Past temperature reconstructions from deep ice cores: Relevance for future climate change. Climate Past, 2, 145165, https://doi.org/10.5194/cp-2-145-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, M., Z. Kuang, and P. N. Blossey, 2014: A moisture budget perspective of the amount effect. Geophys. Res. Lett., 41, 13291335, https://doi.org/10.1002/2013GL058302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, D., and I. Simmonds, 2004: Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res. Atmos., 109, D07105, https://doi.org/10.1029/2003JD004228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauling, A. G., C. M. Bitz, I. J. Smith, and P. J. Langhorne, 2016: The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an Earth system model. J. Climate, 29, 16551672, https://doi.org/10.1175/JCLI-D-15-0501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauling, A. G., I. J. Smith, P. J. Langhorne, and C. M. Bitz, 2017: Time-dependent freshwater input from ice shelves: Impacts on Antarctic sea ice and the Southern Ocean in an Earth system model. Geophys. Res. Lett., 44, 10 45410 461, https://doi.org/10.1002/2017GL075017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Royal Soc. London, 193A, 120145, https://doi.org/10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Petit, J. R., J. W. White, N. W. Young, J. Jouzel, and Y. S. Korotkevich, 1991: Deuterium excess in recent Antarctic snow. J. Geophys. Res., 96, 51135122, https://doi.org/10.1029/90JD02232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, A., and P. J. Huybers, 2014: Sea ice and dynamical controls on preindustrial and last glacial maximum accumulation in central Greenland. J. Climate, 27, 89028917, https://doi.org/10.1175/JCLI-D-14-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamatin, A. N., V. Y. Lipenkov, N. I. Barkov, J. Jouzel, J. R. Petit, and D. Raynaud, 1998: Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica). J. Geophys. Res., 103, 89638977, https://doi.org/10.1029/97JD02253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, https://doi.org/10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenemann, S. W., and E. J. Steig, 2016: Seasonal and spatial variations of 17Oexcess and dexcess in Antarctic precipitation: Insights from an intermediate complexity isotope model. J. Geophys. Res., 121, 11 21511 247, https://doi.org/10.1002/2016JD025117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Severinghaus, J. P., T. Sowers, E. J. Brook, R. B. Alley, and M. L. Bender, 1998: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141146, https://doi.org/10.1038/34346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakun, J. D., and A. E. Carlson, 2010: A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev., 29, 18011816, https://doi.org/10.1016/j.quascirev.2010.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakun, J. D., and et al. , 2012: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, 4954, https://doi.org/10.1038/nature10915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siler, N., G. H. Roe, and K. C. Armour, 2018: Insights into the zonal-mean response of the hydrologic cycle to global warming from a diffusive energy balance model. J. Climate, 31, 74817493, https://doi.org/10.1175/JCLI-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siler, N., G. H. Roe, K. C. Armour, and N. Feldl, 2019: Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change. Climate Dyn., 52, 39833995, https://doi.org/10.1007/s00382-018-4359-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., C. M. Bitz, J. Nusbaumer, and D. C. Noone, 2016a: A mathematical framework for analysis of water tracers: Part 1: Development of theory and application to the preindustrial mean state. J. Adv. Model. Earth Syst., 8, 9911013, https://doi.org/10.1002/2016MS000649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., C. M. Bitz, A. Donohoe, J. Nusbaumer, and D. C. Noone, 2016b: A mathematical framework for analysis of water tracers. Part II: Understanding large-scale perturbations in the hydrological cycle due to CO2 doubling. J. Climate, 29, 67656782, https://doi.org/10.1175/JCLI-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., C. M. Bitz, A. Donohoe, and P. J. Rasch, 2017: A source-receptor perspective on the polar hydrologic cycle: Sources, seasonality, and Arctic–Antarctic parity in the hydrologic cycle response to CO2 doubling. J. Climate, 30, 999910017, https://doi.org/10.1175/JCLI-D-16-0917.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2009: Asymmetries in the moisture origin of Antarctic precipitation. Geophys. Res. Lett., 36, L22803, https://doi.org/10.1029/2009GL040242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., J. Zhu, J. King, S. B. Malevich, G. J. Hakim, and C. J. Poulsen, 2020: Glacial cooling and climate sensitivity revisited. Nature, 584, 569573, https://doi.org/10.1038/s41586-020-2617-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694, https://doi.org/10.1023/A:1005319109110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urey, H. C., 1947: The thermodynamic properties of isotopic substances. J. Chem. Soc., 0, 562581, https://doi.org/10.1039/jr9470000562.

  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Academic Press, 483 pp.

  • Werner, M., U. Mikolajewicz, M. Heimann, and G. Hoffmann, 2000: Borehole versus isotope temperatures on Greenland: Seasonality does matter. Geophys. Res. Lett., 27, 723726, https://doi.org/10.1029/1999GL006075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, M., M. Heimann, and G. Hoffman, 2001: Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus, 53B, 5371, https://doi.org/10.3402/tellusb.v53i1.16539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 396 396 72
Full Text Views 130 130 38
PDF Downloads 164 164 52

The Large-Scale, Long-Term Coupling of Temperature, Hydrology, and Water Isotopes

View More View Less
  • 1 a College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 2 b National Center for Atmospheric Research, Boulder, Colorado
  • | 3 c Department of Earth and Space Sciences, University of Washington, Seattle, Washington
  • | 4 d Department of Geological Sciences, University of Colorado, Boulder, Colorado
  • | 5 e Department of Physics, University of Auckland, Auckland, New Zealand
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The stable isotope ratios of oxygen and hydrogen in polar ice cores are known to record environmental change, and they have been widely used as a paleothermometer. Although it is known to be a simplification, the relationship is often explained by invoking a single condensation pathway with progressive distillation to the temperature at the location of the ice core. In reality, the physical factors are complicated, and recent studies have identified robust aspects of the hydrologic cycle’s response to climate change that could influence the isotope–temperature relationship. In this study, we introduce a new zonal-mean isotope model derived from radiative transfer theory and incorporate it into a recently developed moist energy balance climate model (MEBM), thus providing an internally consistent representation of the physical coupling between temperature, hydrology, and isotope ratios in the zonal-mean climate. The isotope model reproduces the observed pattern of meteoric δ18O in the modern climate and allows us to evaluate the relative importance of different processes for the temporal correlation between δ18O and temperature at high latitudes. We find that the positive temporal correlation in polar ice cores is predominantly a result of suppressed high-latitude evaporation with cooling, rather than local temperature changes. The same mechanism also explains the difference in the strength of the isotope–temperature relationship between Greenland and Antarctica.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 22 July 2021 to correct a typographical error in the equation appearing in the article text just above Eq. (17).

Corresponding author: Nicholas Siler, nick.siler@oregonstate.edu

Abstract

The stable isotope ratios of oxygen and hydrogen in polar ice cores are known to record environmental change, and they have been widely used as a paleothermometer. Although it is known to be a simplification, the relationship is often explained by invoking a single condensation pathway with progressive distillation to the temperature at the location of the ice core. In reality, the physical factors are complicated, and recent studies have identified robust aspects of the hydrologic cycle’s response to climate change that could influence the isotope–temperature relationship. In this study, we introduce a new zonal-mean isotope model derived from radiative transfer theory and incorporate it into a recently developed moist energy balance climate model (MEBM), thus providing an internally consistent representation of the physical coupling between temperature, hydrology, and isotope ratios in the zonal-mean climate. The isotope model reproduces the observed pattern of meteoric δ18O in the modern climate and allows us to evaluate the relative importance of different processes for the temporal correlation between δ18O and temperature at high latitudes. We find that the positive temporal correlation in polar ice cores is predominantly a result of suppressed high-latitude evaporation with cooling, rather than local temperature changes. The same mechanism also explains the difference in the strength of the isotope–temperature relationship between Greenland and Antarctica.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 22 July 2021 to correct a typographical error in the equation appearing in the article text just above Eq. (17).

Corresponding author: Nicholas Siler, nick.siler@oregonstate.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.00 MB)
Save