• Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Álvarez-García, F., M. Latif, and A. Biastoch, 2008: On multidecadal and quasi-decadal North Atlantic variability. J. Climate, 21, 34333452, https://doi.org/10.1175/2007JCLI1800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, J., and et al. , 2014: A multi-model comparison of Atlantic multidecadal variability. Climate Dyn., 43, 23332348, https://doi.org/10.1007/s00382-014-2056-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellomo, K., L. N. Murphy, M. A. Cane, A. C. Clement, and L. M. Polvani, 2018: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Climate Dyn., 50, 36873698, https://doi.org/10.1007/s00382-017-3834-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82, https://doi.org/10.1016/S0065-2687(08)60005-9.

    • Crossref
    • Export Citation
  • Bloomfield, P., 2004: Fourier Analysis of Time Series: An Introduction. John Wiley & Sons, 288 pp.

  • Bock, L., and et al. , 2020: Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos., 125, e2019JD032321, https://doi.org/10.1029/2019JD032321.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., W. E. Johns, B. A. King, G. McCarthy, E. L. McDonagh, B. I. Moat, and D. A. Smeed, 2020: Reduction in ocean heat transport at 26°N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Climate, 33, 16771689, https://doi.org/10.1175/JCLI-D-19-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Rädel, and B. Stevens, 2015: The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 350, 320324, https://doi.org/10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and et al. , 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, https://doi.org/10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2001: Observations of atmosphere–ocean coupling in the North Atlantic. Quart. J. Roy. Meteor. Soc., 127, 18931916, https://doi.org/10.1002/qj.49712757603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., C. Frankignoul, S. Minobe, and B. Vannière, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air–sea interactions? Curr. Climate Change Rep., 5, 390406, https://doi.org/10.1007/s40641-019-00148-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 2008: On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3. J. Climate, 21, 55245544, https://doi.org/10.1175/2008JCLI2019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and F. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Climate, 29, 941962, https://doi.org/10.1175/JCLI-D-15-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., S. Manabe, and R. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 1993–2011, https://doi.org/10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18, 11171135, https://doi.org/10.1175/JCLI3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676691, https://doi.org/10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escudier, R., J. Mignot, and D. Swingedouw, 2013: A 20-year coupled ocean–sea ice–atmosphere variability mode in the North Atlantic in an AOGCM. Climate Dyn., 40, 619636, https://doi.org/10.1007/s00382-012-1402-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., H. A. Dijkstra, and A. von der Heydt, 2008: Sub-surface signatures of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 35, L19602, https://doi.org/10.1029/2008GL034989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, https://doi.org/10.1029/RG023i004p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N., 2005: Northern Hemisphere circulation. Nature, 437, 496, https://doi.org/10.1038/437496a.

  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell, 1963: On the power spectrum of “red noise”. J. Atmos. Sci., 20, 182184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, I., and P. J. Klotzbach, 2009: A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res., 114, D24107, https://doi.org/10.1029/2009JD012728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464467, https://doi.org/10.1038/nature12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93, 1101511 021, https://doi.org/10.1029/JD093iD09p11015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2013: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation. Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/GM134.

    • Crossref
    • Export Citation
  • Kanzow, T., and et al. , 2007: Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science, 317, 938941, https://doi.org/10.1126/science.1141293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koul, V., and et al. , 2020: Unraveling the choice of the North Atlantic subpolar gyre index. Sci. Rep., 10 (1), 112, https://doi.org/10.1038/s41598-020-57790-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and N. S. Keenlyside, 2011: A perspective on decadal climate variability and predictability. Deep-Sea Res. II, 58, 18801894, https://doi.org/10.1016/j.dsr2.2010.10.066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., A. Timmermann, A. Grötzner, C. Eckert, and R. Voss, 2002: On North Atlantic interdecadal variability: A stochastic view. Ocean Forecasting, N. Pinardi, and J. Woods, Eds., Springer, 149–177.

    • Crossref
    • Export Citation
  • Latif, M., and et al. , 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 16051614, https://doi.org/10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., M. Collins, H. Pohlmann, and N. Keenlyside, 2006: A review of predictability studies of the Atlantic sector climate on decadal time scales. J. Climate, 19, 59715987, https://doi.org/10.1175/JCLI3945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Park, and W. Park, 2019: Decadal Atlantic meridional overturning circulation slowing events in a climate model. Climate Dyn., 53, 11111124, https://doi.org/10.1007/s00382-019-04772-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and et al. , 2018: Temperature. Vol. 1, World Ocean Atlas 2018, A. Mishonov, Technical Ed., NOAA Atlas NESDIS 81, 52 pp.

  • Lohmann, K., H. Drange, and M. Bentsen, 2009: Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Climate Dyn., 32, 273285, https://doi.org/10.1007/s00382-008-0467-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Statistical Forecast Project Rep. 1, Dept. of Meteorology, Massachusetts Institute of Technology, 49 pp.

  • Madec, G., 2008: NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), Tech. Rep. 27, 209 pp.

  • Mecking, J. V., N. S. Keenlyside, and R. J. Greatbatch, 2014: Stochastically-forced multidecadal variability in the North Atlantic: A model study. Climate Dyn., 43, 271288, https://doi.org/10.1007/s00382-013-1930-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., D. L. Hodson, J. I. Robson, R. T. Sutton, R. A. Wood, and J. A. Hunt, 2015: Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett., 42, 59265934, https://doi.org/10.1002/2015GL064360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., and C. Frankignoul, 2009: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Climate Dyn., 33, 4562, https://doi.org/10.1007/s00382-008-0452-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., W. E. Johns, S. G. Yeager, G. Danabasoglu, T. L. Delworth, and A. Rosati, 2013: The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J. Climate, 26, 43354356, https://doi.org/10.1175/JCLI-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muthers, S., C. Raible, E. Rozanov, and T. Stocker, 2016: Response of the AMOC to reduced solar radiation—The modulating role of atmospheric chemistry. Earth Syst. Dyn., 7, 877892, https://doi.org/10.5194/esd-7-877-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, P., J. Mignot, D. Swingedouw, F. Sévellec, and E. Guilyardi, 2015: Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog. Oceanogr., 137, 237249, https://doi.org/10.1016/j.pocean.2015.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, https://doi.org/10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T., W. Park, and M. Latif, 2016: Correcting North Atlantic sea surface salinity biases in the Kiel Climate Model: Influences on ocean circulation and Atlantic multidecadal variability. Climate Dyn., 47, 25432560, https://doi.org/10.1007/s00382-016-2982-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, W., and M. Latif, 2008: Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys. Res. Lett., 35, L22703, https://doi.org/10.1029/2008GL035779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, W., N. Keenlyside, M. Latif, A. Ströh, R. Redler, E. Roeckner, and G. Madec, 2009: Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J. Climate, 22, 7192, https://doi.org/10.1175/2008JCLI2261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al. , 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI-Rep. 349, 127 pp.

  • Saba, V. S., and et al. , 2016: Enhanced warming of the northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans, 121, 118132, https://doi.org/10.1002/2015JC011346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and J. C. McWilliams, 1997: Stochasticity and spatial resonance in interdecadal climate fluctuations. J. Climate, 10, 22992320, https://doi.org/10.1175/1520-0442(1997)010<2299:SASRII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2009: The CLIVAR C20C project: Selected twentieth century climate events. Climate Dyn., 33, 603614, https://doi.org/10.1007/s00382-008-0451-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2013: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate, 26, 21602183, https://doi.org/10.1175/JCLI-D-11-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, X. Li, J. Xue, R. Ding, F. Xie, and Y. Li, 2018: Oceanic forcing of the interhemispheric SST dipole associated with the Atlantic multidecadal oscillation. Environ. Res. Lett., 13, 074026, https://doi.org/10.1088/1748-9326/aacf66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, F. Kucharski, J. Xue, and X. Li, 2019: Contrasting spatial structures of Atlantic multidecadal oscillation between observations and slab ocean model simulations. Climate Dyn., 52, 13951411, https://doi.org/10.1007/s00382-018-4201-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., M. Latif, W. Park, and T. Park, 2020: On the interpretation of the North Atlantic averaged sea surface temperature. J. Climate, 33, 60256045, https://doi.org/10.1175/JCLI-D-19-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., G. D. McCarthy, J. Robson, B. Sinha, A. T. Archibald, and L. J. Gray, 2018: Atlantic multidecadal variability and the UK ACSIS program. Bull. Amer. Meteor. Soc., 99, 415425, https://doi.org/10.1175/BAMS-D-16-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32, 138160, https://doi.org/10.1175/1520-0485(2002)032<0138:IOTTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, S. I., and G. K. Vallis, 2018: Atmospheric response to SST anomalies. Part I: Background-state dependence, teleconnections, and local effects in winter. J. Atmos. Sci., 75, 41074124, https://doi.org/10.1175/JAS-D-17-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., M. Latif, R. Voss, and A. Grötzner, 1998: Northern hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11, 19061931, https://doi.org/10.1175/1520-0442-11.8.1906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, and C. Li, 2014: North Atlantic multidecadal SST oscillation: External forcing versus internal variability. J. Mar. Syst., 133, 2738, https://doi.org/10.1016/j.jmarsys.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M. Andres, I. A. Le Bras, T. M. Joyce, and M. S. McCartney, 2017: Moored observations of the Deep Western Boundary Current in the NW Atlantic: 2004–2014. J. Geophys. Res. Oceans, 122, 74887505, https://doi.org/10.1002/2017JC012984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valcke, S., E. Guilyardi, and C. Larsson, 2006: PRISM and ENES: A European approach to Earth system modelling. Concurr. Comput.: Pract. Exper., 18, 247262, https://doi.org/10.1002/cpe.915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • von Storch, H., T. Bruns, I. Fischer-Bruns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere. J. Geophys. Res., 93, 11 02211 036, https://doi.org/10.1029/JD093iD09p11022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., G. Bürger, R. Schnur, and J. S. von Storch, 1995: Principal oscillation patterns: A review. J. Climate, 8, 377400, https://doi.org/10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 7073, https://doi.org/10.1109/TAU.1967.1161901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyer, W. and et al. , 2020: CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075.

    • Search Google Scholar
    • Export Citation
  • Zantopp, R., J. Fischer, M. Visbeck, and J. Karstensen, 2017: From interannual to decadal: 17 years of boundary current transports at the exit of the Labrador Sea. J. Geophys. Res. Oceans, 122, 17241748, https://doi.org/10.1002/2016JC012271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, https://doi.org/10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface–subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, https://doi.org/10.1029/2008GL035463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y. O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 245 245 39
Full Text Views 58 58 7
PDF Downloads 78 78 7

Subpolar Gyre–AMOC–Atmosphere Interactions on Multidecadal Timescales in a Version of the Kiel Climate Model

View More View Less
  • 1 a GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • | 2 b Ocean University of China, Qingdao, China
  • | 3 c Faculty of Mathematics and Natural Sciences, Christian Albrechts University of Kiel, Kiel, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere–ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)–Atlantic meridional overturning circulation (AMOC) coupling and atmosphere–ocean coupling are essential. The oceanic barotropic and meridional overturning streamfunctions and the sea level pressure are jointly analyzed to derive the leading mode of Atlantic sector variability. This mode accounting for 23.7% of the total combined variance is oscillatory with an irregular periodicity of 25–50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre leads to lower surface salinity and density in the sinking region, which reduces deep convection and eventually AMOC strength. There is a positive ocean–atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat flux forcing associated with the North Atlantic Oscillation drives the eigenmode.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Sun, jsun@geomar.de

Abstract

There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere–ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)–Atlantic meridional overturning circulation (AMOC) coupling and atmosphere–ocean coupling are essential. The oceanic barotropic and meridional overturning streamfunctions and the sea level pressure are jointly analyzed to derive the leading mode of Atlantic sector variability. This mode accounting for 23.7% of the total combined variance is oscillatory with an irregular periodicity of 25–50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre leads to lower surface salinity and density in the sinking region, which reduces deep convection and eventually AMOC strength. There is a positive ocean–atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat flux forcing associated with the North Atlantic Oscillation drives the eigenmode.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Sun, jsun@geomar.de
Save