• Abbot, D. S., and I. Halevy, 2010: Dust aerosol important for Snowball Earth deglaciation. J. Climate, 23, 41214132, https://doi.org/10.1175/2010JCLI3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and R. T. Pierrehumbert, 2010: Mudball: Surface dust and Snowball Earth deglaciation. J. Geophys. Res., 115 (D3), D03104, https://doi.org/10.1029/2009JD012007.

    • Search Google Scholar
    • Export Citation
  • Albani, S., and et al. , 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541570, https://doi.org/10.1002/2013MS000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and et al. , 2016: Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophys. Res. Lett., 43, 39443954, https://doi.org/10.1002/2016GL067911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahcall, J. N., M. H. Pinsonneault, and S. Basu, 2001: Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J., 555, 9901012, https://doi.org/10.1086/321493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belnap, J., and O. L. Lange, 2001: Structure and functioning of biological soil crusts: A synthesis. Biological Soil Crusts: Structure, Function, and Management, J. Belnap and O. L. Lange, Eds., Springer, 471–479.

    • Crossref
    • Export Citation
  • Boyce, C. K., and J.-E. Lee, 2017: Plant evolution and climate over geological timescales. Annu. Rev. Earth Planet. Sci., 45, 6187, https://doi.org/10.1146/annurev-earth-063016-015629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandler, M. A., and L. E. Sohl, 2000: Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophys. Res., 105, 20 73720 756, https://doi.org/10.1029/2000JD900221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choobari, O. A., P. Zawar-Reza, and A. Sturman, 2014: The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res., 138, 152165, https://doi.org/10.1016/j.atmosres.2013.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dadic, R., P. C. Mullen, M. Schneebeli, R. E. Brandt, and S. G. Warren, 2013: Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the transantarctic mountains: Implications for sea glaciers on snowball Earth. J. Geophys. Res. Earth Surf., 118, 16581676, https://doi.org/10.1002/jgrf.20098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feulner, G., and H. Kienert, 2014: Climate simulations of Neoproterozoic snowball Earth events: Similar critical carbon dioxide levels for the Sturtian and Marinoan glaciations. Earth Planet. Sci. Lett., 404, 200205, https://doi.org/10.1016/j.epsl.2014.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and J. R. Anderson, 2001: Characteristics of Chinese aerosols determined by individual-particle analysis. J. Geophys. Res., 106, 18 03718 045, https://doi.org/10.1029/2000JD900725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J.-H. Yoon, and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 64616476, https://doi.org/10.1175/JCLI-D-11-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., 2017: Atmospheric chemistry: Warming or cooling dust? Nat. Geosci., 10, 246248, https://doi.org/10.1038/ngeo2923.

  • Gough, D. O., 1981: Solar interior structure and luminosity variations. Sol. Phys., 74, 2134, https://doi.org/10.1007/BF00151270.

  • He, C., K. N. Liou, Y. Takano, F. Chen, and M. Barlage, 2019: Enhanced snow absorption and albedo reduction by dust-snow internal mixing: Modeling and parameterization. J. Adv. Model. Earth Syst., 11, 37553776, https://doi.org/10.1029/2019MS001737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998: A Neoproterozoic Snowball Earth. Science, 281, 13421346, https://doi.org/10.1126/science.281.5381.1342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., and et al. , 2017: Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv., 3, e1600983, https://doi.org/10.1126/sciadv.1600983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2010: Los Alamos Sea Ice Model documentation and software user’s manual, version 4.1. Doc. LA-CC-06-012, 76 pp., http://csdms.colorado.edu/w/images/CICE_documentation_and_software_user's_manual.pdf.

  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and S. R. Smith, 1999: GCM simulations of Snowball Earth conditions during the late Proterozoic. Geophys. Res. Lett., 26, 22632266, https://doi.org/10.1029/1999GL900538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kok, J. F., and et al. , 2017: Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci., 10, 274278, https://doi.org/10.1038/ngeo2912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Hir, G., Y. Donnadieu, G. Krinner, and G. Ramstein, 2010: Toward the snowball Earth deglaciation…. Climate Dyn., 35, 285297, https://doi.org/10.1007/s00382-010-0748-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-X., and et al. , 2008: Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res., 160, 179210, https://doi.org/10.1016/j.precamres.2007.04.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., Y. Liu, Y. Peng, J.-F. Lamarque, M. Wang, and Y. Hu, 2020: Large influence of dust on the Precambrian climate. Nat. Commun., 11 (1), 4427, https://doi.org/10.1038/s41467-020-18258-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. R. Peltier, J. Yang, and G. Vettoretti, 2013: The initiation of Neoproterozoic “snowball” climates in CCSM3: The influence of paleocontinental configuration. Climate Past, 9, 25552577, https://doi.org/10.5194/cp-9-2555-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. R. Peltier, J. Yang, G. Vettoretti, and Y. W. Wang, 2017: Strong effects of tropical ice-sheet coverage and thickness on the hard snowball Earth bifurcation point. Climate Dyn., 48, 34593474, https://doi.org/10.1007/s00382-016-3278-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. R. Peltier, J. Yang, and Y. Hu, 2018: Influence of surface topography on the critical carbon dioxide level required for the formation of a modern snowball Earth. J. Climate, 31, 84638479, https://doi.org/10.1175/JCLI-D-17-0821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo, 2006: Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111, D10202, https://doi.org/10.1029/2005JD006653.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16 41516 430, https://doi.org/10.1029/95JD00690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, J. L., and et al. , 2018: The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA, 115, E2274E2283, https://doi.org/10.1073/pnas.1719588115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp., www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Okada, K., J. Heintzenberg, K. Kai, and Y. Qin, 2001: Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett., 28, 31233126, https://doi.org/10.1029/2000GL012798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and et al. , 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Planavsky, N. J., and et al. , 2021: Evolution of the structure and impact of Earth’s biosphere. Nat. Rev. Earth Environ., 2, 123139, https://doi.org/10.1038/s43017-020-00116-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, C., and R. Jacob, 2004: Factors that inhibit snowball Earth simulation. Paleoceanogr. Paleoclimatol., 19, PA4021, https://doi.org/10.1029/2004PA001056.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C., R. T. Pierrehumbert, and R. L. Jacob, 2001: Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth.” Geophys. Res. Lett., 28, 15751578, https://doi.org/10.1029/2000GL012058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, C., R. L. Jacob, R. T. Pierrehumbert, and T. T. Huynh, 2002: Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophys. Res. Lett., 29, 1515, https://doi.org/10.1029/2001GL014352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000RG000095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puttick, M. N., and et al. , 2018: The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol., 28, 733745, e732, https://doi.org/10.1016/j.cub.2018.01.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagoo, N., and T. Storelvmo, 2017: Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett., 44, 58075817, https://doi.org/10.1002/2017GL072584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanza, R., and et al. , 2015: Modeling dust as component minerals in the Community Atmosphere Model: Development of framework and impact on radiative forcing. Atmos. Chem. Phys., 15, 537561, https://doi.org/10.5194/acp-15-537-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, M., Y. J. Balkanski, W. Guelle, and F. Dulac, 1998: Role of aerosol size distribution and source location in a three-dimensional simulation of a Saharan dust episode tested against satellite-derived optical thickness. J. Geophys. Res., 103, 10 57910 592, https://doi.org/10.1029/97JD02779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., J. D. Zika, G. Nurser, S. A. Josey, and R. Marsh, 2016: Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep., 6, 19, https://doi.org/10.1038/srep38752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and et al. , 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Rep. LAUR-01853, 141, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Snyder, C. W., 2016: Evolution of global temperature over the past two million years. Nature, 538, 226228, https://doi.org/10.1038/nature19798.

  • Su, J., J. Huang, Q. Fu, P. Minnis, J. Ge, and J. Bi, 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 27632771, https://doi.org/10.5194/acp-8-2763-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and J. Marotzke, 2010: The transition from the present-day climate to a modern Snowball Earth. Climate Dyn., 35, 887905, https://doi.org/10.1007/s00382-009-0633-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and D. S. Abbot, 2012: Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins. Climate Past, 8, 20792092, https://doi.org/10.5194/cp-8-2079-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., D. S. Abbot, R. T. Pierrehumbert, and J. Marotzke, 2011: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere–ocean general circulation model. Climate Past, 7, 249263, https://doi.org/10.5194/cp-7-249-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., H. Zhang, X. Jing, and X. Wei, 2013: Effect of non-spherical dust aerosol on its direct radiative forcing. Atmos. Res., 120, 112126, https://doi.org/10.1016/j.atmosres.2012.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., W. R. Peltier, and Y. Y. Hu, 2012a: The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part I: The influences of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization. J. Climate, 25, 27112736, https://doi.org/10.1175/JCLI-D-11-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., W. R. Peltier, and Y. Y. Hu, 2012b: The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part II: Climate dynamic feedbacks. J. Climate, 25, 27372754, https://doi.org/10.1175/JCLI-D-11-00190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20, 14451467, https://doi.org/10.1175/JCLI4056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zender, C. S., D. Newman, and O. Torres, 2003a: Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses. J. Geophys. Res., 108, 4543, https://doi.org/10.1029/2002JD003039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zender, C. S., H. Bian, and D. Newman, 2003b: Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108, 4416 https://doi.org/10.1029/2002JD002775.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 190 190 22
Full Text Views 69 69 23
PDF Downloads 79 79 22

Influence of Dust on the Initiation of Neoproterozoic Snowball Earth Events

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
  • | 2 b School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
  • | 3 c Department of Earth System Science, Tsinghua University, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

It has been demonstrated previously that atmospheric dust loading during the Precambrian could have been an order of magnitude higher than in the present day and could have cooled the global climate by more than 10°C. Here, using the fully coupled atmosphere–ocean general circulation model CESM1.2.2, we determine whether such dust loading could have facilitated the formation of Neoproterozoic snowball Earth events. Our results indicate that global dust emission decreases as atmospheric CO2 concentration (pCO2) decreases due to increasing snow coverage, but atmospheric dust loading does not change or even increases due to decreasing precipitation and strengthening June–August (JJA) Hadley circulation. The latter lifts more dust particles to high altitude and thus increases the lifetime of these particles. As the climate becomes colder and the surface albedo higher, the cooling effect of dust becomes weaker; when the global mean surface temperature is approximately −13°C, dust has negligible cooling effect. The threshold pCO2 at which Earth enters a snowball state is between 280 to 140 ppmv when there is no dust, and is similar when there is relatively light dust loading (~4.4 times the present-day value). However, the threshold pCO2 decreases dramatically to between 70 and 35 ppmv when there is heavy dust loading (~33 times the present-day value), due to the decrease in planetary albedo, which increases the energy input into the climate system. Therefore, dust makes it more difficult for Earth to enter a snowball state.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonggang Liu, ygliu@pku.edu.cn

Abstract

It has been demonstrated previously that atmospheric dust loading during the Precambrian could have been an order of magnitude higher than in the present day and could have cooled the global climate by more than 10°C. Here, using the fully coupled atmosphere–ocean general circulation model CESM1.2.2, we determine whether such dust loading could have facilitated the formation of Neoproterozoic snowball Earth events. Our results indicate that global dust emission decreases as atmospheric CO2 concentration (pCO2) decreases due to increasing snow coverage, but atmospheric dust loading does not change or even increases due to decreasing precipitation and strengthening June–August (JJA) Hadley circulation. The latter lifts more dust particles to high altitude and thus increases the lifetime of these particles. As the climate becomes colder and the surface albedo higher, the cooling effect of dust becomes weaker; when the global mean surface temperature is approximately −13°C, dust has negligible cooling effect. The threshold pCO2 at which Earth enters a snowball state is between 280 to 140 ppmv when there is no dust, and is similar when there is relatively light dust loading (~4.4 times the present-day value). However, the threshold pCO2 decreases dramatically to between 70 and 35 ppmv when there is heavy dust loading (~33 times the present-day value), due to the decrease in planetary albedo, which increases the energy input into the climate system. Therefore, dust makes it more difficult for Earth to enter a snowball state.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonggang Liu, ygliu@pku.edu.cn
Save