• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S.-K. Behera, S.-A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and et al. , 2017: An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around the early 1990s. Climate Dyn., 48, 191207, https://doi.org/10.1007/s00382-016-3069-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. X., M. Dong, and Y. N. Shao, 1992: The characteristics of interannual variations on the East Asian monsoon. J. Meteor. Soc. Japan, 70, 397421, https://doi.org/10.2151/jmsj1965.70.1B_397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. B. Bandgar, C. Gnanaseelan, and J. J. Luo, 2015: Role of tropical Indian Ocean air–sea interactions in modulating Indian summer monsoon in a coupled model. Atmos. Sci. Lett., 16, 170176, https://doi.org/10.1002/asl2.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, P.-H., C.-H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 116, D13111, https://doi.org/10.1029/2010JD015554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Carvalho, L. M. V., 2016: The monsoons and climate change. The Monsoons and Climate Change: Observations and Modeling, L. M. V. de Carvalho and C. Jones, Eds., Springer, 1–6.

    • Crossref
    • Export Citation
  • Ding, R. Q., K. J. Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 10591071, https://doi.org/10.1007/s00382-009-0555-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., S. I. Shin, Q. Y. Liu, and Z. Y. Liu, 2013: Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett., 40, 24712477, https://doi.org/10.1002/grl.50494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong, 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, https://doi.org/10.1029/2010JD014761.

    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, C.-Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, https://doi.org/10.1002/joc.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and et al. , 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, https://doi.org/10.1007/s00382-014-2123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Huang, G., and Z. Yan, 1999: The East Asian summer monsoon circulation anomaly index and its interannual variations. Chin. Sci. Bull., 44, 13251329, https://doi.org/10.1007/BF02885855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., K. Hu, and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, https://doi.org/10.1175/2010JCLI3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., L. T. Zhou, and W. Chen, 2003: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci., 20, 5569, https://doi.org/10.1007/BF03342050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, J. Li, Y. Li, H. Hu, and Y. Lian, 2013: Variability of the Indian Ocean SST and its possible impact on summer western North Pacific anticyclone in the NCEP Climate Forecast System. Climate Dyn., 41, 21992212, https://doi.org/10.1007/s00382-013-1934-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karori, M. A., J. P. Li, and F.-F. Jin, 2013: The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. J. Climate, 26, 45674582, https://doi.org/10.1175/JCLI-D-12-00324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, https://doi.org/10.1029/2011GL048237.

  • Larkin, N.-K., and D.-E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, https://doi.org/10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2016: Interdecadal changes on the seasonal prediction of the western North Pacific summer climate around the late 1970s and early 1990s. Climate Dyn., 46, 24352448, https://doi.org/10.1007/s00382-015-2711-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., J. Lu, G. Huang, and K. Hu, 2008: Tropical Indian ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, https://doi.org/10.1175/2008JCLI2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. Z., W. Zhou, D. L. Chen, C. Y. Li, and J. Song, 2014: Water vapor transport and moisture budget over eastern China: Remote forcing from the two types of El Niño. J. Climate, 27, 87788792, https://doi.org/10.1175/JCLI-D-14-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., G. Huang, K. M. Hu, R. G. Wu, H. N. Gong, P. F. Wang, and G. J. Zhao, 2018: The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model. Climate Dyn., 51, 16711686, https://doi.org/10.1007/s00382-017-3976-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 44744497, https://doi.org/10.1175/JCLI3526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, S., and K.-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J. Meteor. Soc. Japan, 73, 105124, https://doi.org/10.2151/jmsj1965.73.1_105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., A. L. Gordon, T. Lee, J. T. Potemra, K. Pujiana, and S. E. Wijffels, 2014: The Indonesian seas and their role in the couple ocean climate system. Nat. Geosci., 7, 487492, https://doi.org/10.1038/ngeo2188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, K. Hu, X. Qu, G. Wen, and Y. Gong, 2014: Different influences of two types of El Niños on the Indian Ocean SST variations. Theor. Appl. Climatol., 117, 475484, https://doi.org/10.1007/s00704-013-1022-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variability. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Yang, T. J. Zhou, and B. Wang, 2008: Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 17711789, https://doi.org/10.1175/2007JCLI1981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., and H. L. Ren, 2020: Understanding key roles of two ENSO modes in spatiotemporal diversity of ENSO. J. Climate, 33, 64536469, https://doi.org/10.1175/JCLI-D-19-0770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., X. W. Jiang, S. Yang, and Y. Q. Li, 2013: Different impacts of the two types of El Niño on Asian summer monsoon onset. Environ. Res. Lett., 8, 044053, https://doi.org/10.1088/1748-9326/8/4/044053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and et al. , 2020: Interdecadal enhancement in the interannual variability of the summer monsoon meridional circulation over the South China Sea around the early 1990s. Climate Dyn., 55, 21492164, https://doi.org/10.1007/s00382-020-05375-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F.-F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical–convective response to El Niño. J. Climate, 16, 11211139, https://doi.org/10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H.-Y., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. P. Wen, S. Yang, and Y. Q. Li, 2010: An interdecadal change in southern China summer rainfall around 1992/93. J. Climate, 23, 23892403, https://doi.org/10.1175/2009JCLI3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2017: Change of ENSO characteristics in response to global warming (in Chinese). Chin. Sci. Bull., 62, 17381751, https://doi.org/10.1360/N972016-01225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. M. Hu, and Q. Y. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, https://doi.org/10.1175/2010JCLI3429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., J.-G. Jhun, and S.-W. Yeh, 2008: Decadal change in the relationship between East Asian–western North Pacific summer monsoons and ENSO in the mid-1990s. Geophys. Res. Lett., 35, L20711, https://doi.org/10.1029/2008GL035751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, X., and L. T. Zhou, 2020: Strengthened relationships of northwest China wintertime precipitation with ENSO and midlatitude North Atlantic SST since the mid-1990s. J. Climate, 33, 39673988, https://doi.org/10.1175/JCLI-D-19-0454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, F., and W. Chen, 2013: Roles of the tropical convective activities over different regions in the earlier onset of the South China Sea summer monsoon after 1993. Theor. Appl. Climatol., 113, 175185, https://doi.org/10.1007/s00704-012-0776-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zha, J. L., D. M. Zhao, J. Wu, and P. W. Zhang, 2019: Numerical simulation of the effects of land use and cover change on the near-surface wind speed over eastern China. Climate Dyn., 53, 17831803, https://doi.org/10.1007/s00382-019-04737-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H. Y., Z. P. Wen, R. G. Wu, Z. S. Chen, and Y. Y. Guo, 2017: Inter-decadal changes in the East Asian summer monsoon and associations with sea surface temperature anomaly in the South Indian Ocean. Climate Dyn., 48, 11251139, https://doi.org/10.1007/s00382-016-3131-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, G., G. Huang, R. Wu, W. Tao, H. Gong, X. Qu, and K. Hu, 2015: A new upper-level circulation index for the East Asian summer monsoon variability. J. Climate, 28, 99779996, https://doi.org/10.1175/JCLI-D-15-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., 2011: Interdecadal change in sea surface temperature anomalies associated with winter rainfall over south China. J. Geophys. Res., 116, D11101, https://doi.org/10.1029/2010JD015425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., and R.-H. Huang, 2010: The interdecadal variability of summer rainfall in Northwest China and its possible causes. Int. J. Climatol., 30, 549557, https://doi.org/10.1002/joc.1923.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., and J. C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. Climatol., 25, 15851609, https://doi.org/10.1002/joc.1209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., and J. C. L. Chan, 2007: ENSO and South China Sea summer monsoon onset. Int. J. Climatol., 27, 157167, https://doi.org/10.1002/joc.1380.

All Time Past Year Past 30 Days
Abstract Views 331 331 168
Full Text Views 76 76 17
PDF Downloads 129 129 38

Interdecadal Strengthening in the Independent Relationship between the East Asian Summer Monsoon and the Indian Ocean Basin Mode around the Early 1990s

View More View Less
  • 1 a Center of Monsoon System Research, Chinese Academy of Sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study conducts correlation and regression analyses of the JRA-55 reanalysis data and observational rainfall datasets from China’s National Climate Center. The analyses reveal the interdecadal enhancement in the relationship between the East Asian summer monsoon (EASM) and the Indian Ocean Basin mode (IOBM) after the early 1990s, and the diminished correlation between the EASM and the Niño-3 index. The analyses also reveal that the relationship between EASM-related rainfall/circulation with IOBM also experienced an interdecadal shift at the same time. During the first epoch (1977–89), EASM-related rainfall was correlated significantly with the Niño-3 index, and accompanied by a Pacific–Japan-like anomaly pattern of horizontal winds. In a subsequent epoch (1994–2014), EASM-related rainfall was correlated significantly with IOBM, and accompanied by a meridional dipole pattern in the horizontal winds. After the 1990s, IOBM exerted influence on EASM through land–sea thermal contrast, and the critical land area was the region 33°–47°N, 110°–140°E. The interdecadal strengthening in the EASM–IOBM linkage around the early 1990s may be attributable to a faster rate of decay of El Niño after the 1990s.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lian-Tong Zhou, zlt@mail.iap.ac.cn

Abstract

This study conducts correlation and regression analyses of the JRA-55 reanalysis data and observational rainfall datasets from China’s National Climate Center. The analyses reveal the interdecadal enhancement in the relationship between the East Asian summer monsoon (EASM) and the Indian Ocean Basin mode (IOBM) after the early 1990s, and the diminished correlation between the EASM and the Niño-3 index. The analyses also reveal that the relationship between EASM-related rainfall/circulation with IOBM also experienced an interdecadal shift at the same time. During the first epoch (1977–89), EASM-related rainfall was correlated significantly with the Niño-3 index, and accompanied by a Pacific–Japan-like anomaly pattern of horizontal winds. In a subsequent epoch (1994–2014), EASM-related rainfall was correlated significantly with IOBM, and accompanied by a meridional dipole pattern in the horizontal winds. After the 1990s, IOBM exerted influence on EASM through land–sea thermal contrast, and the critical land area was the region 33°–47°N, 110°–140°E. The interdecadal strengthening in the EASM–IOBM linkage around the early 1990s may be attributable to a faster rate of decay of El Niño after the 1990s.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lian-Tong Zhou, zlt@mail.iap.ac.cn
Save