• Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661675, https://doi.org/10.1002/joc.3370060607.

  • Aumann, H. H., and et al. , 2018: Evaluation of radiative transfer models with clouds. J. Geophys. Res., 123, 61426157, https://doi.org/10.1029/2017JD028063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, https://doi.org/10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 76037612, https://doi.org/10.1029/92JD00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchard, V., and et al. , 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, https://doi.org/10.1175/JCLI-D-16-0613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, T., and X. Lee, 2019: Land cover regulates the spatial variability of temperature response to the direct radiative effect of aerosols. Geophys. Res. Lett., 46, 89959003, https://doi.org/10.1029/2019GL083812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, T., X. Lee, and D. Lawrence, 2021: Strong local evaporative cooling over land due to atmospheric aerosols. J. Adv. Model. Earth Syst., 13, e2021MS002491, https://doi.org/10.1029/2021MS002491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, Vol. 15, 38 pp., https://ntrs.nasa.gov/api/citations/19990060930/downloads/19990060930.pdf.

  • Feng, Y., D. Chen, and X. Zhao, 2018: Estimated long-term variability of direct and diffuse solar radiation in North China during 1959–2016. Theor. Appl. Climatol., 137, 153163, https://doi.org/10.1007/s00704-018-2579-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freidenreich, S., and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31 38931 409, https://doi.org/10.1029/1999JD900456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and et al. , 2019: The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res., 124, 12 38012 403, https://doi.org/10.1029/2019JD030943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilgen, H., and A. Ohmura, 1999: The Global Energy Balance Archive. Bull. Amer. Meteor. Soc., 80, 831850, https://doi.org/10.1175/1520-0477(1999)080<0831:TGEBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S. H., S. Kato, H. W. Barker, F. G. Rose, and S. Sun-Mack, 2014: Effects of 3-D clouds on atmospheric transmission of solar radiation: Cloud type dependencies inferred from A-Train satellite data. J. Geophys. Res., 119, 943963, https://doi.org/10.1002/2013JD020683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hogan, R. J., and J. K. Shonk, 2013: Incorporating the effects of 3D radiative transfer in the presence of clouds into two-stream multilayer radiation schemes. J. Atmos. Sci., 70, 708724, https://doi.org/10.1175/JAS-D-12-041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, Y.-T., S. Moorthi, and K. Campana, 2002: Parameterization of solar radiation transfer in the NCEP models. NCEP Office Note 441, 46 pp., https://repository.library.noaa.gov/view/noaa/23085.

  • Jiang, H., N. Lu, J. Qin, W. Tang, and L. Yao, 2019a: A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data. Renew. Sustain. Energy Rev., 114, 109327, https://doi.org/10.1016/j.rser.2019.109327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., Y. Yang, Y. Bai, and H. Wang, 2019b: Evaluation of the total, direct, and diffuse solar radiations from the ERA5 reanalysis data in China. IEEE Geosci. Remote Sens. Lett., 17, 4751, https://doi.org/10.1109/LGRS.2019.2916410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., Y. Yang, H. Wang, Y. Bai, and Y. Bai, 2020: Surface diffuse solar radiation determined by reanalysis and satellite over East Asia: Evaluation and comparison. Remote Sens., 12, 1387, https://doi.org/10.3390/rs12091387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and et al. , 2018: Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) energy balanced and filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Climate, 24, 45414557, https://doi.org/10.1175/2011JCLI3978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knohl, A., and D. D. Baldocchi, 2008: Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res. Biogeosci., 113, G02023, https://doi.org/10.1029/2007JG000663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci., 31, 118133, https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, K.-T., and et al. , 2016: Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation. Proc. Natl. Acad. Sci. USA, 113, E8210E8218, https://doi.org/10.1073/pnas.1617391113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B. Y., and R. C. Jordan, 1960: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy, 4 (3), 119, https://doi.org/10.1016/0038-092X(60)90062-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and et al. , 2019: Decomposing shortwave top-of-atmosphere and surface radiative flux variations in terms of surface and atmospheric contributions. J. Climate, 32, 50035019, https://doi.org/10.1175/JCLI-D-18-0826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markovic, M., C. G. Jones, K. Winger, and D. Paquin, 2009: The surface radiation budget over North America: Gridded data assessment and evaluation of regional climate models. Int. J. Climatol., 29, 22262240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 10141017, https://doi.org/10.1038/nature07949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and et al. , 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, https://doi.org/10.1109/TGRS.2011.2144602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J., H. W. Barker, J. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, MCRAD, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798, https://doi.org/10.1175/2008MWR2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moseid, K. O., and et al. , 2020: Bias in CMIP6 models compared to observed regional dimming and brightening trends (1961–2014). Atmos. Chem. Phys. Discuss., 20, 16 02316 040, https://doi.org/10.5194/acp-20-16023-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okata, M., T. Nakajima, K. Suzuki, T. Inoue, T. Y. Nakajima, and H. Okamoto, 2017: A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data. J. Geophys. Res., 122, 443468, https://doi.org/10.1002/2016JD025441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and et al. , 2012: The continual intercomparison of radiation codes: Results from phase I. J. Geophys. Res., 117, 6118, https://doi.org/10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., and P. Zuidema, 2011: Assessment of MODIS cloud effective radius and optical thickness retrievals over the southeast Pacific with VOCALS-REx in situ measurements. J. Geophys. Res., 116, 24206, https://doi.org/10.1029/2011JD016155.

    • Search Google Scholar
    • Export Citation
  • Pfeifroth, U., A. Sanchez-Lorenzo, V. Manara, J. Trentmann, and R. Hollmann, 2018: Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records. J. Geophys. Res., 123, 17351754, https://doi.org/10.1002/2017JD027418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., P. M. Forster, and B. Stevens, 2016: The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental protocol for CMIP6. Geosci. Model Dev., 9, 34473460, https://doi.org/10.5194/gmd-9-3447-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plass, G. N., and G. W. Kattawar, 1968: Monte Carlo calculations of light scattering from clouds. Appl. Opt., 7, 415419, https://doi.org/10.1364/AO.7.000415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, Z., A. Oumbe, and et al. , 2017: Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteor. Z., 26, 3357, https://doi.org/10.1127/metz/2016/0781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C., and et al. , 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rap, A., and et al. , 2018: Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. Nat. Geosci., 11, 640644, https://doi.org/10.1038/s41561-018-0208-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, https://doi.org/10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y., C. Jiang, H. Kobayashi, and M. Detto, 2018: MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ., 204, 812825, https://doi.org/10.1016/j.rse.2017.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samukova, E. A., E. V. Gorbarenko, and A. E. Erokhina, 2014: Long-term variations of solar radiation in Europe. Russ. Meteor. Hydrol., 39, 514520, https://doi.org/10.3103/S1068373914080020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Lorenzo, A., and et al. , 2015: Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res., 120, 95559569, https://doi.org/10.1002/2015JD023321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, S. A., R. J. Hogan, C. Klinger, J. C. Chiu, and B. Mayer, 2016: Representing 3-D cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length. J. Geophys. Res., 121, 85678582, https://doi.org/10.1002/2016JD024876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, M., D. Folini, S. Yang, R. P. Allan, and M. Wild, 2020: Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nat. Geosci., 13, 110115, https://doi.org/10.1038/s41561-019-0528-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and et al. , 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis System. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Liu, and Q. Bao, 2016: Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions. Atmos. Res., 167, 8999, https://doi.org/10.1016/j.atmosres.2015.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. W., and Y. H. Yang, 2014: China’s dimming and brightening: Evidence, causes and hydrological implications. Ann. Geophys., 32, 4155, https://doi.org/10.5194/angeo-32-41-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. W., S. Yang, A. Sanchez-Lorenzo, W. Yuan, and M. Wild, 2020: A revisit of direct and diffuse solar radiation in China based on homogeneous surface observations: Climatology, trends, and their probable causes. J. Geophys. Res., 125, e2020JD032634, https://doi.org/10.1029/2020JD032634.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2012: Enlightening global dimming and brightening. Bull. Amer. Meteor. Soc., 93, 2737, https://doi.org/10.1175/BAMS-D-11-00074.1.

  • Wild, M., 2016: Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdiscip. Rev.: Climate Change, 7, 91107, https://doi.org/10.1002/wcc.372.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, and J.-J. Morcrette, 1998: The distribution of solar energy at the Earth’s surface as calculated in the ECMWF re-analysis. Geophys. Res. Lett., 25, 43734376, https://doi.org/10.1029/1998GL900175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., and et al. , 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Climate Dyn., 44, 33933429, https://doi.org/10.1007/s00382-014-2430-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, C. Schär, G. Müller, D. Folini, M. Schwarz, and M. Z. Hakuba, 2017: The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data, 9, 601613, https://doi.org/10.5194/essd-9-601-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., X. L. Wang, and M. Wild, 2019: Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958–2016). J. Climate, 32, 59015913, https://doi.org/10.1175/JCLI-D-18-0666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S. Lou, H. Wang, P. Wang, and H. Liao, 2020: Trends and source apportionment of aerosols in Europe during 1980–2018. Atmos. Chem. Phys., 20, 25792590, https://doi.org/10.5194/acp-20-2579-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., and N. Unger, 2017: Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China. Atmos. Chem. Phys., 17, 13291342, https://doi.org/10.5194/acp-17-1329-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and et al. , 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Liang, G. Wang, Y. Yao, B. Jiang, and J. Cheng, 2016: Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sens., 8, 225, https://doi.org/10.3390/rs8030225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, and S. Liu, 2013: Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America. J. Geophys. Res., 118, 95529564, https://doi.org/10.1002/jgrd.50697.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 255 255 46
Full Text Views 109 109 14
PDF Downloads 124 124 12

Large Differences in Diffuse Solar Radiation among Current-Generation Reanalysis and Satellite-Derived Products

View More View Less
  • 1 a School of the Environment, Yale University, New Haven, Connecticut
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Although the partitioning of shortwave radiation K at the surface into its diffuse (K↓,d) and direct beam (K↓,b) components is relevant for, among other things, the terrestrial energy and carbon budgets, there is a dearth of large-scale comparisons of this partitioning across reanalysis and satellite-derived products. Here we evaluate K, K↓,d, and K↓,b, as well as the diffuse fraction kd of solar radiation in four current-generation reanalysis datasets (NOAA–CIRES–DOE, NCEP–NCAR, MERRA-2, and ERA5) and one satellite-derived product (CERES) using ≈1400 site-years of observations. Although the systematic positive biases in K are consistent with previous studies, the biases in gridded K↓,d and K↓,b vary in direction and magnitude, both annually and across seasons. The intermodel variability in cloud cover strongly explains the biases in both K↓,d and K↓,b. Over Europe and China, the long-term (10 yr and longer) trends in K↓,d in the gridded products differ noticeably from corresponding observations and the grid-averaged 35-yr trends show an order of magnitude variability. In the MERRA-2 reanalysis, which includes both clouds and assimilated aerosols, the reductions in both clouds and aerosols reinforce each other to establish brightening trends over Europe, whereas the effect of increasing aerosols overwhelms the effect of decreasing cloud cover over China. The intermodel variability in kd seen here (from 0.27 to 0.50 from CERES to MERRA-2) suggests substantial differences in shortwave parameterization schemes and their inputs in climate models and can contribute to intermodel variability in coupled simulations. From these results, we call for systematic evaluations of K↓,d and K↓,b in CMIP6 models.

SIGNIFICANCE STATEMENT

The direction of sunlight can be changed by particles and clouds in the air. This is known as diffuse light, and it affects solar energy generation and plant growth. Here, we address a gap in previous studies and compare the diffuse light in global datasets. We find large differences between datasets, explained mostly by differing cloud amounts. When compared with measurements from the ground, we find that these differences exist for most sites and across seasons. The change in diffuse light over the last 35 years also varies widely among datasets. Our results call for larger-scale comparisons of diffuse light in all current-generation global models. Doing so can help us to better constrain future climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Chakraborty, tc.chakraborty@yale.edu

Abstract

Although the partitioning of shortwave radiation K at the surface into its diffuse (K↓,d) and direct beam (K↓,b) components is relevant for, among other things, the terrestrial energy and carbon budgets, there is a dearth of large-scale comparisons of this partitioning across reanalysis and satellite-derived products. Here we evaluate K, K↓,d, and K↓,b, as well as the diffuse fraction kd of solar radiation in four current-generation reanalysis datasets (NOAA–CIRES–DOE, NCEP–NCAR, MERRA-2, and ERA5) and one satellite-derived product (CERES) using ≈1400 site-years of observations. Although the systematic positive biases in K are consistent with previous studies, the biases in gridded K↓,d and K↓,b vary in direction and magnitude, both annually and across seasons. The intermodel variability in cloud cover strongly explains the biases in both K↓,d and K↓,b. Over Europe and China, the long-term (10 yr and longer) trends in K↓,d in the gridded products differ noticeably from corresponding observations and the grid-averaged 35-yr trends show an order of magnitude variability. In the MERRA-2 reanalysis, which includes both clouds and assimilated aerosols, the reductions in both clouds and aerosols reinforce each other to establish brightening trends over Europe, whereas the effect of increasing aerosols overwhelms the effect of decreasing cloud cover over China. The intermodel variability in kd seen here (from 0.27 to 0.50 from CERES to MERRA-2) suggests substantial differences in shortwave parameterization schemes and their inputs in climate models and can contribute to intermodel variability in coupled simulations. From these results, we call for systematic evaluations of K↓,d and K↓,b in CMIP6 models.

SIGNIFICANCE STATEMENT

The direction of sunlight can be changed by particles and clouds in the air. This is known as diffuse light, and it affects solar energy generation and plant growth. Here, we address a gap in previous studies and compare the diffuse light in global datasets. We find large differences between datasets, explained mostly by differing cloud amounts. When compared with measurements from the ground, we find that these differences exist for most sites and across seasons. The change in diffuse light over the last 35 years also varies widely among datasets. Our results call for larger-scale comparisons of diffuse light in all current-generation global models. Doing so can help us to better constrain future climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Chakraborty, tc.chakraborty@yale.edu

Supplementary Materials

    • Supplemental Materials (PDF 31.41 MB)
Save