• Andrews, D. G., 1987: On the interpretation of the Eliassen-Palm flux divergence. Quart. J. Roy. Meteor. Soc., 113, 323338, https://doi.org/10.1002/qj.49711347518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Y. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Y. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Southern Oscillation. J. Meteor. Soc. Japan, 81, 169177, https://doi.org/10.2151/jmsj.81.169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, https://doi.org/10.1175/JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, D., M. Dameris, H. Garny, and T. Runde, 2012: Implications of all season Arctic sea-ice anomalies on the stratosphere. Atmos. Chem. Phys., 12, 11 81911 831, https://doi.org/10.5194/acp-12-11819-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., X. T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. D. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci., 6, 9991007, https://doi.org/10.1038/ngeo2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., K. Yang, L. X. Wu, G. Huang, A. Santoso, B. Ng, G. J. Wang, and T. Yamagata, 2021: Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Climate Change, 11, 2732, https://doi.org/10.1038/s41558-020-00943-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., S. K. Behera, and T. Yamagata, 2008: Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett., 35, L14S12, https://doi.org/10.1029/2008GL034204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. M. Polvani, and C. Deser, 2019: The effect of Arctic sea ice loss on the Hadley circulation. Geophys. Res. Lett., 46, 963972, https://doi.org/10.1029/2018GL081110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. S., and R. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Climate, 25, 78347851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. G. Wu, W. Chen, K. M. Hu, and B. Yu, 2020: Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Climate Dyn., 54, 51115126, https://doi.org/10.1007/s00382-020-05274-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 9841002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S. P. Xie, G. Huang, and K. M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., W. J. Cai, and Y. L. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, https://doi.org/10.1175/JCLI-D-12-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. R., L. M. Polvani, L. T. Sun, and C. Deser, 2020: Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci., 13, 275281, https://doi.org/10.1038/s41561-020-0546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep-Sea Res. II, 50, 22632284, https://doi.org/10.1016/S0967-0645(03)00056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. Q., and et al. , 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gui, F. Y., Y. K. Tan, C. Y. Li, X. Li, and X. Chen, 2016: Possible triggering of the Indian Ocean Dipole by early summer rainfall anomalies over the eastern Bay of Bengal (in Chinese with English abstract). Trans. Atmos. Sci., 39, 589599.

    • Search Google Scholar
    • Export Citation
  • Guo, F. Y., Q. Y. Liu, S. Sun, and J. L. Yang, 2015: Three types of Indian Ocean dipoles. J. Climate, 28, 30733092, https://doi.org/10.1175/JCLI-D-14-00507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., M. M. Lu, and M. Kanamitsu, 2008: Temporal and spatial characteristics of positive and negative Indian Ocean Dipole with and without ENSO. J. Geophys. Res., 113, D08107, https://doi.org/10.1029/2007JD009151.

    • Search Google Scholar
    • Export Citation
  • Huang, R. P., S. F. Chen, W. Chen, and P. Hu, 2018: Has the regional Hadley circulation over western Pacific during boreal winter been strengthening in recent decades? Atmos. Oceanic Sci. Lett., 11, 454463, https://doi.org/10.1080/16742834.2018.1507412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and et al. , 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus, 65A, 19375, https://doi.org/10.3402/tellusa.v65i0.19375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, https://doi.org/10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Y. J. Orsolini, H. J. Wang, Y. Q. Gao, and S. P. He, 2018: Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic multidecadal oscillation. Adv. Atmos. Sci., 35, 95105, https://doi.org/10.1007/s00376-017-7028-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T. M., B. Wang, C. P. Chang, and Y. S. Zhang, 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., and F. Li, 2018: Impact of interannual variations of spring sea ice in the Barents Sea on East Asian rainfall in June. Atmos. Oceanic Sci. Lett., 11, 275281, https://doi.org/10.1080/16742834.2018.1454249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H. F., Y. M. Tang, D. K. Chen, and T. Lian, 2017: Predictability of the Indian Ocean Dipole in the coupled models. Climate Dyn., 48, 20052024, https://doi.org/10.1007/s00382-016-3187-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. P., A. C. Judith, and Y. Y. Hu, 2004: Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 31, L09211, https://doi.org/10.1029/2004GL019858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res., 120, 32093227, https://doi.org/10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nath, D., W. Chen, C. Zelin, A. I. Pogoreltsev, and K. Wei, 2016: Dynamics of 2013 sudden stratospheric warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection. Sci. Rep., 6, 24 174, https://doi.org/10.1038/srep24174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 1991: Interannual variability of the spatial distribution of sea ice in the north polar region. J. Geophys. Res., 96, 47914801, https://doi.org/10.1029/91JC00082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C., H.-T. Lee, and K. Knapp, 2018: HIRS outgoing longwave radiation—Daily climate data record: Application toward identifying tropical subseasonal variability. Remote Sens., 10, 1325, https://doi.org/10.3390/rs10091325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, H. B., F. Li, S. P. He, Y. J. Orsolini, and J. Y. Li, 2020: Impact of late spring Siberian snow on summer rainfall in south-central China. Climate Dyn., 54, 38033818, https://doi.org/10.1007/s00382-020-05206-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, L., H. H. Hendon, O. Alves, J. J. Luo, M. Balmaseda, and D. Anderson, 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140, 38673884, https://doi.org/10.1175/MWR-D-12-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, M.-R., J.-P. Liu, H.-L. Liu, X.-B. Ren, and X.-C. Wang, 2012: Associations between the autumn Arctic sea ice and North American winter precipitation. Atmos. Oceanic Sci. Lett., 5, 212218, https://doi.org/10.1080/16742834.2012.11446992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., and A. L. Gordon, 2004: Significance of the vertical profile of the Indonesian Throughflow transport to the Indian Ocean. Geophys. Res. Lett., 31, L16307, https://doi.org/10.1029/2004GL020360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, H., R. T. Sutton, J. M. Slingo, M. Roberts, and E. Black, 2005: Indian Ocean climate and dipole variability in Hadley Centre coupled GCMs. J. Climate, 18, 22862307, https://doi.org/10.1175/JCLI3410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. J. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L. T., C. Deser, L. Polvani, and R. Tomas, 2014: Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring. Environ. Res. Lett., 9, 084016, https://doi.org/10.1088/1748-9326/9/8/084016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L. T., M. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate, 31, 78237843, https://doi.org/10.1175/JCLI-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L. T., C. Deser, R. A. Tomas, and M. Alexander, 2020: Global coupled climate response to polar sea ice loss: Evaluating the effectiveness of different ice-constraining approaches. Geophys. Res. Lett., 47, e2019GL085788, https://doi.org/10.1029/2019GL085788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S. W., J. Lan, Y. Fang, Tana, and X. Gao, 2015: A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J. Climate, 28, 50635076, https://doi.org/10.1175/JCLI-D-14-00580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Y. K., H. R. Liu, D. H. Li, and C. Y. Li, 2008: Possible causes for seasonal phase locking of the tropical Indian Ocean Dipole (in Chinese with English abstract). Chin. J. Atmos. Sci., 32, 197205.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2007: Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: Potential predictability and barriers. J. Climate, 20, 33203343, https://doi.org/10.1175/JCLI4162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and et al. , 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, https://doi.org/10.1007/s00382-008-0460-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., R. Murtugudde, and A. Kumar, 2016: Evolution of Indian Ocean Dipole and its forcing mechanisms in the absence of ENSO. Climate Dyn., 47, 24812500, https://doi.org/10.1007/s00382-016-2977-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. J., H. P. Chen, and J. P. Liu, 2015: Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Oceanic Sci. Lett., 8(1), 19, https://doi.org/10.3878/AOSL20140081.

    • Search Google Scholar
    • Export Citation
  • Wang, K., C. Deser, L. T. Sun, and R. A. Tomas, 2018: Fast response of the tropics to an abrupt loss of Arctic sea ice via ocean dynamics. Geophys. Res. Lett., 45, 42644272, https://doi.org/10.1029/2018GL077325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, https://doi.org/10.1175/JCLI-3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., 2018: Progresses in the impact study of Arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes (in Chinese with English abstract). Chin. J. Atmos. Sci., 42, 786805.

    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., D. Y. Gao, and R. H. Huang, 2000: Interannual and interdecadal variations in Arctic sea-ice in spring and winter (in Chinese with English abstract). Climatic Environ. Res., 05, 249258.

    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., K. Yang, and J. A. Francis, 2017: A cold event in Asia during January–February 2012 and its possible association with Arctic sea ice loss. J. Climate, 30, 79717990, https://doi.org/10.1175/JCLI-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. P., S. P. He, F. Li, and H. J. Wang, 2018: Impact of northern Eurasian snow cover in autumn on the warm Arctic–cold Eurasia pattern during the following January and its linkage to stationary planetary waves. Climate Dyn., 50, 19932006, https://doi.org/10.1007/s00382-017-3732-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. P., S. P. He, Y. Q. Gao, T. Furevik, H. J. Wang, F. Li, and F. Ogawa, 2019: Strengthened linkage between midlatitudes and Arctic in boreal winter. Climate Dyn., 53, 39713983, https://doi.org/10.1007/s00382-019-04764-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C. X., W. J. Li, Z. Y. Guan, and T. Yamagata, 2019: Impacts of April snow cover extent over Tibetan Plateau and the central Eurasia on Indian Ocean Dipole. Int. J. Climatol., 39, 17561767, https://doi.org/10.1002/joc.5888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Yang, W. Zhou, and C. Y. Li, 2008: Influences of the Indian Ocean Dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 18491859, https://doi.org/10.1002/joc.1678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Yang, and C. Y. Li, 2014: Possible influences of the tropical Indian Ocean Dipole on the eastward propagation of MJO. J. Trop. Meteor., 20, 173180.

    • Search Google Scholar
    • Export Citation
  • Zhang, P. F., Y. T. Wu, I. R. Simpson, K. L. Smith, X. D. Zhang, B. De, and P. Callaghan, 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv., 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. P. Li, J. Q. Xue, J. Feng, Q. Y. Wang, Y. D. Xu, Y. H. Wang, and F. Zheng, 2018: Impact of the South China Sea summer monsoon on the Indian Ocean dipole. J. Climate, 31, 65576573, https://doi.org/10.1175/JCLI-D-17-0815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., 2017: Impact of Arctic amplification on East Asian winter climate. Atmos. Oceanic Sci. Lett., 10, 385388, https://doi.org/10.1080/16742834.2017.1350093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, A. Kumar, and J. L. Kinter, 2015: Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J. Climate, 28, 79627984, https://doi.org/10.1175/JCLI-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., and H. S. Chen, 2019: Possible connection between anomalous activity of Scandinavian atmospheric teleconnection pattern and winter snowfall in the Yangtze-Huaihe River Basin of China. Atmos. Oceanic Sci. Lett., 12, 218225, https://doi.org/10.1080/16742834.2019.1593041.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 193 193 19
Full Text Views 59 59 13
PDF Downloads 76 76 18

Possible Impacts of December Laptev Sea Ice on Indian Ocean Dipole Conditions during Spring

View More View Less
  • 1 a Center for Climate System Prediction Research/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 b Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • | 3 c Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study investigates the relationship and underlying mechanisms between the Indian Ocean dipole (IOD) and Arctic sea ice. The results reveal that the preceding December sea ice over the Laptev Sea plays an important role in the formation of positive IOD conditions during April–June (AMJ). In years with positive December Laptev sea ice anomalies, the zonal wavenumber-1 (ZWN1) planetary wave component is stimulated at middle and high latitudes. The high-latitude ZWN1 propagates upward to the stratosphere and downward to the troposphere in December, affects the atmospheric circulation over the North Atlantic, and further leads to a warm sea surface temperature anomaly (SSTA) that persists until the following February. The midlatitude ZWN1 propagates upward to the stratosphere in January and downward to the troposphere in February, contributing to the positive 200-hPa geopotential height anomaly (GPHA) in the subtropical Atlantic. The ascending anomaly induced by the warm SSTA and the positive 200-hPa GPHA in the subtropical Atlantic in February are favorable for effective Rossby wave source formation and stimulate an atmospheric wave train that forms an anomalous cyclone over the northern Arabian Sea, which contributes to enhanced convection over northern India, stimulating an anomalous anticyclone over East India and leading to reduced convection over the northeastern Indian Ocean in March. The reduced convection over the northeastern Indian Ocean may lead to strengthened equatorial easterly winds and further contribute to positive IOD conditions in AMJ. These findings indicate that December Laptev sea ice may contribute to AMJ IOD conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn

Abstract

This study investigates the relationship and underlying mechanisms between the Indian Ocean dipole (IOD) and Arctic sea ice. The results reveal that the preceding December sea ice over the Laptev Sea plays an important role in the formation of positive IOD conditions during April–June (AMJ). In years with positive December Laptev sea ice anomalies, the zonal wavenumber-1 (ZWN1) planetary wave component is stimulated at middle and high latitudes. The high-latitude ZWN1 propagates upward to the stratosphere and downward to the troposphere in December, affects the atmospheric circulation over the North Atlantic, and further leads to a warm sea surface temperature anomaly (SSTA) that persists until the following February. The midlatitude ZWN1 propagates upward to the stratosphere in January and downward to the troposphere in February, contributing to the positive 200-hPa geopotential height anomaly (GPHA) in the subtropical Atlantic. The ascending anomaly induced by the warm SSTA and the positive 200-hPa GPHA in the subtropical Atlantic in February are favorable for effective Rossby wave source formation and stimulate an atmospheric wave train that forms an anomalous cyclone over the northern Arabian Sea, which contributes to enhanced convection over northern India, stimulating an anomalous anticyclone over East India and leading to reduced convection over the northeastern Indian Ocean in March. The reduced convection over the northeastern Indian Ocean may lead to strengthened equatorial easterly winds and further contribute to positive IOD conditions in AMJ. These findings indicate that December Laptev sea ice may contribute to AMJ IOD conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.35 MB)
Save