• Anslow, F. S., S. Hostetler, W. R. Bidlake, and P. U. Clark, 2008: Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty. J. Geophys. Res., 113, F02019, https://doi.org/10.1029/2007JF000850.

    • Search Google Scholar
    • Export Citation
  • Azam, M. F., and S. Srivastava, 2020: Mass balance and runoff modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Himalaya using ERA5 data since 1979. J. Hydrol., 590, 125432, https://doi.org/10.1016/j.jhydrol.2020.125432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azam, M. F., P. Wagnon, C. Vincent, A. Ramanathan, A. Linda, and V. B. Singh, 2014: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Ann. Glaciol., 55, 6980, https://doi.org/10.3189/2014AoG66A104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolch, T., T. Pieczonka, K. Mukherjee, and J. Shea, 2017: Glaciers in the Hunza Catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere, 11, 531539, https://doi.org/10.5194/tc-11-531-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1932: Notes on radiation in the atmosphere. Quart. J. Roy. Meteor. Soc., 58, 389420, https://doi.org/10.1002/qj.49705824704.

  • Chen, D., Y. Tian, T. Yao, and T. Ou, 2016: Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau. Sci. Rep., 6, 30304, https://doi.org/10.1038/srep30304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., L. Tian, J. Zong, D. Zhu, C. Wang, and S. Jin, 2021: Variation of the Large and Small Anglong Glaciers in the Ngari Prefecture, Tibet, China. J. Glaciol. Geocryol., 43, 1423, https://doi.org/10.7522/j.issn.1000-0240.2019.0001.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., 2005: Mass and energy balance of glaciers and ice sheets. Encyclopedia of Hydrological Sciences, M. G. Anderson and J. J. McDonnell, Eds., Wiley, 2555–2573, https://doi.org/10.1002/0470848944.hsa171.

    • Crossref
    • Export Citation
  • Crawford, T. M., and C. E. Duchon, 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38, 474480, https://doi.org/10.1175/1520-0450(1999)038<0474:AIPFEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuffey, K., and W. S. B. Paterson, 2010: The Physics of Glaciers. 4th ed. Elsevier, 693 pp.

  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W., and et al. , 2016: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun., 7, 10 925, https://doi.org/10.1038/ncomms10925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farinotti, D., W. W. Immerzeel, R. J. de Kok, D. J. Quincey, and A. Dehecq, 2020: Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci., 13, 816, https://doi.org/10.1038/s41561-019-0513-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsythe, N., H. J. Fowler, X. Li, S. Blenkinsop, and D. Pritchard, 2017: Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Climate Change, 7, 664670, https://doi.org/10.1038/nclimate3361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., and Y. Ageta, 2000: Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol., 46, 244252, https://doi.org/10.3189/172756500781832945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., T. Yao, V. Masson-Delmotte, H. C. Steen-Larsen, and W. Wang, 2019: Collapsing glaciers threaten Asia’s water supplies. Nature, 565, 1921, https://doi.org/10.1038/d41586-018-07838-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and et al. , 2020: Importance and vulnerability of the world’s water towers. Nature, 577, 364369, https://doi.org/10.1038/s41586-019-1822-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kääb, A., and et al. , 2018: Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci., 11, 114120, https://doi.org/10.1038/s41561-017-0039-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenzhebaev, R., M. Barandun, M. Kronenberg, Y. Chen, R. Usubaliev, and M. Hoelzle, 2017: Mass balance observations and reconstruction for Batysh Sook Glacier, Tien Shan, from 2004 to 2016. Cold Reg. Sci. Technol., 135, 7689, https://doi.org/10.1016/j.coldregions.2016.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., V. Kumar, M. Sugi, and J. Yoshimura, 2009: Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J. Atmos. Sci., 66, 553578, https://doi.org/10.1175/2008JAS2723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandal, A., and et al. , 2020: Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002–2019 using in situ measurements. J. Glaciol., 66, 727741, https://doi.org/10.1017/jog.2020.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, J. M., J. M. Schaefer, S. Rupper, and A. Corley, 2019: Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv., 5, eaav7 266, https://doi.org/10.1126/sciadv.aav7266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., N. J. Cullen, D. R. Hardy, G. Kaser, and L. Klok, 2008: Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int. J. Climatol., 28, 881892, https://doi.org/10.1002/joc.1589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, W. Yang, and D. Scherer, 2012: The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere, 6, 14451461, https://doi.org/10.5194/tc-6-1445-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, and D. Scherer, 2014: Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Climate Change, 4, 6873, https://doi.org/10.1038/nclimate2055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, E. Collier, J. C. Chiang, and D. Scherer, 2017: Prominent midlatitude circulation signature in High Asia’s surface climate during monsoon. J. Geophys. Res., 122, 12 70212 712, https://doi.org/10.1002/2017JD027414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, M., F. Obleitner, C. H. Reijmer, V. A. Pohjola, P. Głowacki, and J. Kohler, 2016: Adjustment of regional climate model output for modeling the climatic mass balance of all glaciers on Svalbard. J. Geophys. Res., 121, 54115429, https://doi.org/10.1002/2015JD024380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, Y., Q. Liu, J. Wang, Y. Zhang, Y. Sheng, and S. Liu, 2018: An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology, 308, 91106, https://doi.org/10.1016/j.geomorph.2018.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., 2005: Extracting a climate signal from 169 glacier records. Science, 308, 675677, https://doi.org/10.1126/science.1107046.

  • Oerlemans, J., and W. H. Knap, 1998: A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. J. Glaciol., 44, 231238, https://doi.org/10.1017/S0022143000002574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragettli, S., F. Pellicciotti, R. Bordoy, and W. W. Immerzeel, 2013: Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resour. Res., 49, 60486066, https://doi.org/10.1002/wrcr.20450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rupper, S., and G. Roe, 2008: Glacier changes and regional climate: A mass and energy balance approach. J. Climate, 21, 53845401, https://doi.org/10.1175/2008JCLI2219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, A., T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal, 2015: Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. Cryosphere, 9, 865880, https://doi.org/10.5194/tc-9-865-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shean, D. E., S. Bhushan, P. Montesano, D. R. Rounce, A. Arendt, and B. Osmanoglu, 2020: A systematic, regional assessment of High Mountain Asia Glacier mass balance. Front. Earth Sci., 7, 363, https://doi.org/10.3389/feart.2019.00363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., and S. Liu, 2000: Estimation on the response of glaciers in China to the global warming in the 21st century. Chin. Sci. Bull., 45, 668672, https://doi.org/10.1007/BF02886048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soheb, M., A. Ramanathan, T. Angchuk, A. Mandal, N. Kumar, and S. Lotus, 2020: Mass-balance observation, reconstruction and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019. J. Glaciol., 66, 627642, https://doi.org/10.1017/jog.2020.34.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thibert, E., R. Blanc, C. Vincent, and N. Eckert, 2008: Glaciological and volumetric mass-balance measurements: Error analysis over 51 years for Glacier de Sarennes, French Alps. J. Glaciol., 54, 522532, https://doi.org/10.3189/002214308785837093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L. G., and et al. , 2018: Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains. Quat. Sci. Rev., 188, 114, https://doi.org/10.1016/j.quascirev.2018.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., V. Masson-Delmotte, M. Stievenard, T. Yao, and J. Jouzel, 2001: Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res., 106, 28 08128 088, https://doi.org/10.1029/2001JD900186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., and et al. , 2017: Two glaciers collapse in western Tibet. J. Glaciol., 63, 194197, https://doi.org/10.1017/jog.2016.122.

  • Van Pelt, W., and et al. , 2019: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere, 13, 22592280, https://doi.org/10.5194/tc-13-2259-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C., and et al. , 2013: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere, 7, 569582, https://doi.org/10.5194/tc-7-569-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagnon, P., and et al. , 2013: Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere, 7, 17691786, https://doi.org/10.5194/tc-7-1769-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, N., J. He, J. Pu, X. Jiang, and Z. Jing, 2010: Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin. Sci. Bull., 55, 38103817, https://doi.org/10.1007/s11434-010-4167-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., J. He, W. Tang, J. Qin, and C. C. Cheng, 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteor., 150, 3846, https://doi.org/10.1016/j.agrformet.2009.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., T. Yao, X. Guo, M. Zhu, S. Li, and D. B. Kattel, 2013: Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res., 118, 95799594, https://doi.org/10.1002/jgrd.50760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., X. Guo, T. Yao, M. Zhu, and Y. Wang, 2016: Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Climate Dyn., 47, 805815, https://doi.org/10.1007/s00382-015-2872-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and et al. , 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and et al. , 2013: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys., 51, 525548, https://doi.org/10.1002/rog.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and et al. , 2019: Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin. Sci. Bull., 64, 27702782, https://doi.org/10.1360/TB-2019-0246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, Q., J. Zong, L. Tian, J. G. Cogley, C. Song, and W. Guo, 2017: Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s to 2000–13. J. Glaciol., 63, 273287, https://doi.org/10.1017/jog.2016.137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., W. Chen, G. Li, W. Yang, S. Yi, and W. Luo, 2020: Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle. Remote Sens. Environ., 237, 111 554, https://doi.org/10.1016/j.rse.2019.111554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Li, and P. Zhou, 2021: Mass balance reconstruction for Shiyi Glacier in the Qilian Mountains, northeastern Tibetan Plateau, and its climatic drivers. Climate Dyn., 56, 969984, https://doi.org/10.1007/s00382-020-05514-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., D. Chen, and T. Yao, 2018: Evaluation of circulation-type classifications with respect to temperature and precipitation variations in the central and eastern Tibetan Plateau. Int. J. Climatol., 38, 49384949, https://doi.org/10.1002/joc.5708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Hirabayashi, and S. Liu, 2012: Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau. J. Hydrol., 444, 146160, https://doi.org/10.1016/j.jhydrol.2012.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., W. Yang, T. Yao, L. Tian, and B. Xu, 2016: Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: Observations and modeling. Sci. Rep., 6, 30706, https://doi.org/10.1038/srep30706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and et al. , 2014: Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, M., T. Yao, W. Yang, B. Xu, G. Wu, and X. Wang, 2018a: Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau. Climate Dyn., 50, 34573484, https://doi.org/10.1007/s00382-017-3817-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, M., T. Yao, W. Yang, B. Xu, G. Wu, X. Wang, and Y. Xie, 2018b: Reconstruction of the mass balance of Muztag Ata No. 15 glacier, eastern Pamir, and its climatic drivers. J. Glaciol., 64, 259274, https://doi.org/10.1017/jog.2018.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, M., T. Yao, Y. Xie, B. Xu, W. Yang, and S. Yang, 2020: Mass balance of Muji Glacier, northeastern Pamir, and its controlling climate factors. J. Hydrol., 590, 125447, https://doi.org/10.1016/j.jhydrol.2020.125447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, M., W. Yang, T. Yao, L. Tian, L. G. Thompson, and H. Zhao, 2021: The influence of key climate variables on mass balance of Naimona’nyi glacier on a north-facing slope in the western Himalayas. J. Geophys. Res., 126, e2020JD033956, https://doi.org/10.1029/2020JD033956.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 263 263 35
Full Text Views 81 81 17
PDF Downloads 124 124 19

Influence of Atmospheric Circulation on Glacier Mass Balance in Western Tibet: An Analysis Based on Observations and Modeling

View More View Less
  • 1 a State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • | 2 b Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
  • | 3 c Ngari Station for Desert Environment Observation and Research, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Tibet, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Glacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy–mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed that Xiao Anglong Glacier is close to a balanced condition, with an average value of −53 ± 185 mm water equivalent (w.e.) yr−1 for 1968–2019. The interannual mass balance variability during 1968–2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968–2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83 ± 185, −210 ± 185, and −10 ± 185 mm w.e. yr−1 for 1968–90, 1991–2012, and 2013–19, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Meilin Zhu, meilinzhu@itpcas.ac.cn; Lonnie G. Thompson, thompson.3@osu.edu

Abstract

Glacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy–mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed that Xiao Anglong Glacier is close to a balanced condition, with an average value of −53 ± 185 mm water equivalent (w.e.) yr−1 for 1968–2019. The interannual mass balance variability during 1968–2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968–2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83 ± 185, −210 ± 185, and −10 ± 185 mm w.e. yr−1 for 1968–90, 1991–2012, and 2013–19, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Meilin Zhu, meilinzhu@itpcas.ac.cn; Lonnie G. Thompson, thompson.3@osu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.42 MB)
Save