• Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., S. Chen, G. Chen, and R. Wu, 2016: Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Adv. Atmos. Sci., 33, 919930, https://doi.org/10.1007/s00376-016-5206-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., R. Wu, and X. Xiao, 2018: A new perspective of intensified impact of ENSO Modoki on tropical cyclone genesis frequency over the western North Pacific around 1990. Int. J. Climatol., 38, 42644275, https://doi.org/10.1002/joc.5667.

    • Search Google Scholar
    • Export Citation
  • Caron, L. P., M. Boudreault, and S. J. Camargo, 2015: On the variability and predictability of eastern Pacific tropical cyclone activity. J. Climate, 28, 96789696, https://doi.org/10.1175/JCLI-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, T. C., H. H. Hsu, and C. C. Hong, 2016: Enhanced influences of tropical Atlantic SST on WNP–NIO atmosphere–ocean coupling since the early 1980s. J. Climate, 29, 65096525, https://doi.org/10.1175/JCLI-D-15-0807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and et al. , 2015: Skillful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, https://doi.org/10.1038/ncomms7869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S. I. An, S. W. Yeh, and J. Y. Yu, 2013: ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs. J. Climate, 26, 14851501, https://doi.org/10.1175/JCLI-D-12-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, D., A. S. Gupta, A. Sharma, A. S. Taschetto, R. Mehrotra, and B. Sivakumar, 2017: Impacts of the tropical trans-basin variability on Australian rainfall. Climate Dyn., 49, 16171629, https://doi.org/10.1007/s00382-016-3405-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. Naval Research Laboratory Rep. NRL/MR/7540-02-16, 22 pp.

  • Collins, J. M., 2007: The relationship of ENSO and relative humidity to interannual variations of hurricane frequency in the North-East Pacific Ocean. Papers Appl. Geogr. Conf., 30, 324333, https://scholarcommons.usf.edu/geo_facpub/168.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, https://doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, https://doi.org/10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

  • Fisher, R. A., 1915: Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika, 10, 507521, https://doi.org/10.2307/2331838.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., Z. Chen, and W. Zhang, 2018: Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J. Climate, 31, 853862, https://doi.org/10.1175/JCLI-D-17-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grassi, B., G. Redaelli, P. O. Canziani, and G. Visconti, 2012: Effects of the PDO phase on the tropical belt width. J. Climate, 25, 32823290, https://doi.org/10.1175/JCLI-D-11-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Atmospheric Science Paper 234, Colorado State University, 121 pp.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Eds., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, Y., Z. Zhong, X. Yang, and Y. Sun, 2015: Contribution of East Indian Ocean SSTA to western North Pacific tropical cyclone activity under El Niño/La Niña conditions. Int. J. Climatol., 35, 506519, https://doi.org/10.1002/joc.3997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., J. F. Mitchell, and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8, 247257, https://doi.org/10.1007/BF00198619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, https://doi.org/10.1175/JCLI-D-11-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. H., H. S. Kim, J. H. Jeong, and S. W. Son, 2009: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys. Res. Lett., 36, L06702, https://doi.org/10.1029/2009GL037163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., Y. H. Li, T. Li, and M. Y. Lee, 2011: Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys. Res. Lett., 38, L16712, https://doi.org/10.1029/2011GL048821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., C. Zhang, S. Yang, D. Chen, and S. He, 2018: Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO. Climate Dyn., 51, 24552465, https://doi.org/10.1007/s00382-017-4022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, L., P. Guo, S. N. Hameed, and D. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 23782384, https://doi.org/10.1002/2015GL063184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizuka, S., and T. Matsuura, 2009: Relationship between ENSO and North Atlantic tropical cyclone frequency simulated in a coupled general circulation model. Hurricanes and Climate Change, J. B. Elsner and T. H. Jagger, Eds., Springer, 323–338.

    • Crossref
    • Export Citation
  • Imada, Y., and M. Kimoto, 2009: ENSO amplitude modulation related to Pacific decadal variability. Geophys. Res. Lett., 36, L03706, https://doi.org/10.1029/2008GL036421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jien, J. Y., W. A. Gough, and K. Butler, 2015: The influence of El Niño–Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. J. Climate, 28, 24592474, https://doi.org/10.1175/JCLI-D-14-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., 1994: A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J. Phys. Oceanogr., 24, 707715, https://doi.org/10.1175/1520-0485(1994)024<0707:AREAOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: El Niño–Southern Oscillation’s impact on Atlantic basin hurricanes and U.S. landfalls. J. Climate, 24, 12521263, https://doi.org/10.1175/2010JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and E. S. Blake, 2013: North-central Pacific tropical cyclones: Impacts of El Niño–Southern Oscillation and the Madden–Julian oscillation. J. Climate, 26, 77207733, https://doi.org/10.1175/JCLI-D-12-00809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., S. G. Bowen, R. Pielke Jr., and M. M. Bell, 2018: Continental United States landfall frequency and associated damage: Observations and future risks. Bull. Amer. Meteor. Soc., 99, 13591376, https://doi.org/10.1175/BAMS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, https://doi.org/10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476, https://doi.org/10.1175/2008JCLI2207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and et al. , 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. Huang, and G.-H. Chen, 2019: Impacts of the combined modes of the tropical Indo-Pacific sea surface temperature anomalies on the tropical cyclone genesis over the western North Pacific. Int. J. Climatol., 39, 21082119, https://doi.org/10.1002/joc.5938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J. J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. J. Atmos. Sci., 38, 11171131, https://doi.org/10.1175/1520-0469(1981)038<1117:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., M. F. Stuecker, J. B. Kajtar, M. H. England, and M. Collins, 2018: Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Climate Change, 8, 493498, https://doi.org/10.1038/s41558-018-0163-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and et al. , 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, https://doi.org/10.1175/2010JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, https://doi.org/10.2151/jmsj.84.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. H., S. I. An, and J. S. Kug, 2017: Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America. Climate Dyn., 49, 37873798, https://doi.org/10.1007/s00382-017-3538-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 53955416, https://doi.org/10.1175/JCLI-D-17-0678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and et al. , 2006: The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231538, https://doi.org/10.1175/BAMS-87-11-1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royer, J. F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343, https://doi.org/10.1023/A:1005386312622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899, https://doi.org/10.1175/MWR-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharmila, S., and K. J. E. Walsh, 2018: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat. Climate Change, 8, 730736, https://doi.org/10.1038/s41558-018-0227-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, https://doi.org/10.1029/1999GL011043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., and P. J. Klotzbach, 2018: What has controlled the poleward migration of annual averaged location of tropical cyclone lifetime maximum intensity over the western North Pacific since 1961? Geophys. Res. Lett., 45, 11481156, https://doi.org/10.1002/2017GL076883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugi, M., H. Murakami, and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5, 164167, https://doi.org/10.2151/sola.2009-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugi, M., H. Murakami, and J. Yoshimura, 2012: On the mechanism of tropical cyclone frequency changes due to global warming. J. Meteor. Soc. Japan, 90A, 397408, https://doi.org/10.2151/jmsj.2012-A24.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, A., J.-J. Luo, A. C. Hirst, D. Bi, W. Cai, and J. He, 2016: Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Sci. Rep., 6, 38 540, https://doi.org/10.1038/srep38540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and S.-K. Lee, 2009: Co-variability of tropical cyclones in the North Atlantic and the eastern North Pacific. Geophys. Res. Lett., 36, L24702, https://doi.org/10.1029/2009GL041469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and H. Liu, 2016: PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Climate Dyn., 46, 1528, https://doi.org/10.1007/s00382-015-2563-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698, https://doi.org/10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., X. Cao, and Y.-Y. Yang, 2020: Interdecadal change in the relationship of the western North Pacific tropical cyclogenesis frequency to tropical Indian and North Atlantic Ocean SST in early 1990s. J. Geophys. Res. Atmos., 125, e2019JD031493, https://doi.org/10.1029/2019JD031493.

    • Crossref
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. C., X. Lin, and S. P. Xie, 2017: A trans-basin mode of interannual variability of the Central American gap winds: Seasonality and large-scale forcing. J. Climate, 30, 82238235, https://doi.org/10.1175/JCLI-D-17-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J., and S. W. Yeh, 2010: Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. J. Climate, 23, 45254537, https://doi.org/10.1175/2010JCLI3352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428, https://doi.org/10.2151/jmsj.84.405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., T. Li, Z. Tan, and Z. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, https://doi.org/10.1007/s00382-015-2618-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and L. Tao, 2014: Intensified impact of East Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 87248739, https://doi.org/10.1175/JCLI-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. Y., L. G. Wu, and Q. Zhang, 2011: Tropical cyclone damages in China under the background of global warming. J. Trop. Meteor., 27, 442454.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489496, https://doi.org/10.1175/2008BAMS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and L. Wu, 2014: Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study. Meteor. Atmos. Phys., 125, 89101, https://doi.org/10.1007/s00703-014-0322-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315328, https://doi.org/10.1007/s00382-015-2837-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/s00382-018-4136-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and W. Zhou, 2010: Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific. Adv. Atmos. Sci., 27, 13611371, https://doi.org/10.1007/s00376-010-9161-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., S. Chen, and P. J. Klotzbach, 2019a: Recent strengthening of the relationship between the western North Pacific monsoon and western North Pacific tropical cyclone activity during the boreal summer. J. Climate, 32, 82838299, https://doi.org/10.1175/JCLI-D-19-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., J. Zhang, P. J. Klotzbach, and S. Chen, 2019b: Recent increased co-variability of tropical cyclogenesis latitude–longitude over the western North Pacific during the extended boreal summer. J. Climate, 32, 81678179, https://doi.org/10.1175/JCLI-D-19-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 187 187 44
Full Text Views 68 68 12
PDF Downloads 74 74 14

Decadal Modulation of Transbasin Variability on Extended Boreal Summer Tropical Cyclone Activity in the Tropical North Pacific and Atlantic Basins

View More View Less
  • 1 a Key Laboratory of Meteorological Disaster, Ministry of Education, Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 b State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 3 c Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, China
  • | 4 d Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 5 e Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study analyzes decadal modulation of transbasin variability (TBV) on extended boreal summer (May–October) tropical cyclone frequency (TCF) over the western North Pacific (WNP), central-eastern North Pacific (CENP), and North Atlantic (NATL) basins. There are distinct decadal regimes (P1: 1979–97, P2: 1998–2008, and P3: 2009–19) with changes in the interannual relationship between TBV and TCF over these three basins. During P1 and P3, there is a significant interannual TBV–TCF relationship over the CENP and NATL, but these relationships become insignificant during P2. Changes in the interannual TBV–TCF relationship over the WNP are opposite to those over the CENP and NATL basins, with significant relationship during P2 but insignificant relationship during P1 and P3. Changes in all three basins coincide with decadal changes in large-scale parameters associated with TBV. Consistent basinwide changes in lower-tropospheric vorticity (vertical wind shear) associated with TBV appear to be largely responsible for changes in total TCF over the NATL (CENP) during P1 and P3. In contrast, a dipole pattern in lower-tropospheric vorticity and vertical wind shear anomalies associated with TBV over the NATL and CENP basins occurs during P2, leading to an insignificant interannual TBV–TCF relationship over the NATL and CENP basins. Over the WNP, a basinwide consistent distribution of lower-tropospheric vorticity associated with TBV is consistent with changes in total TCF during P2, whereas a dipole correlation pattern between TBV-associated factors and TCF during P1 and P3 leads to a weak correlation between TBV and WNP TCF. These three distinct observed decadal regimes may be associated with interactions between ENSO and the Pacific decadal oscillation on decadal time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haikun Zhao, zhk2004y@gmail.com

Abstract

This study analyzes decadal modulation of transbasin variability (TBV) on extended boreal summer (May–October) tropical cyclone frequency (TCF) over the western North Pacific (WNP), central-eastern North Pacific (CENP), and North Atlantic (NATL) basins. There are distinct decadal regimes (P1: 1979–97, P2: 1998–2008, and P3: 2009–19) with changes in the interannual relationship between TBV and TCF over these three basins. During P1 and P3, there is a significant interannual TBV–TCF relationship over the CENP and NATL, but these relationships become insignificant during P2. Changes in the interannual TBV–TCF relationship over the WNP are opposite to those over the CENP and NATL basins, with significant relationship during P2 but insignificant relationship during P1 and P3. Changes in all three basins coincide with decadal changes in large-scale parameters associated with TBV. Consistent basinwide changes in lower-tropospheric vorticity (vertical wind shear) associated with TBV appear to be largely responsible for changes in total TCF over the NATL (CENP) during P1 and P3. In contrast, a dipole pattern in lower-tropospheric vorticity and vertical wind shear anomalies associated with TBV over the NATL and CENP basins occurs during P2, leading to an insignificant interannual TBV–TCF relationship over the NATL and CENP basins. Over the WNP, a basinwide consistent distribution of lower-tropospheric vorticity associated with TBV is consistent with changes in total TCF during P2, whereas a dipole correlation pattern between TBV-associated factors and TCF during P1 and P3 leads to a weak correlation between TBV and WNP TCF. These three distinct observed decadal regimes may be associated with interactions between ENSO and the Pacific decadal oscillation on decadal time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haikun Zhao, zhk2004y@gmail.com
Save