Strong Quasi-Stationary Wintertime Atmospheric Surface Pressure Anomalies Drive a Dipole Pattern in the Subantarctic Mode Water Formation

Ivana Cerovečki aScripps Institution of Oceanography, La Jolla, California

Search for other papers by Ivana Cerovečki in
Current site
Google Scholar
PubMed
Close
and
Andrew J. S. Meijers bBritish Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Andrew J. S. Meijers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The deepest wintertime (July–September) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is an east–west dipole pattern in each basin. The variability of these dipoles is strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds, and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variabilities of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the western versus eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ivana Cerovečki, icerovecki@ucsd.edu

Abstract

The deepest wintertime (July–September) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is an east–west dipole pattern in each basin. The variability of these dipoles is strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds, and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variabilities of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the western versus eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ivana Cerovečki, icerovecki@ucsd.edu
Save
  • Bindoff, N. L., and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24, 11371152, https://doi.org/10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., A. J. Meijers, M. R. Mazloff, S. T. Gille, V. M. Tamsitt, and P. R. Holland, 2019: The effects of enhanced sea ice export from the Ross Sea on recent cooling and freshening of the southeast Pacific. J. Climate, 32, 20132035, https://doi.org/10.1175/JCLI-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Close, S. E., A. C. Naveira Garabato, E. L. McDonagh, B. A. King, M. Biuw, and L. Boehme, 2013: Control of mode and intermediate water mass properties in Drake Passage by the Amundsen Sea low. J. Climate, 26, 51025123, https://doi.org/10.1175/JCLI-D-12-00346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., 1997: Variability in annual mean circulation in southern high latitudes. Climate Dyn., 13, 745756, https://doi.org/10.1007/s003820050195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, X. J., L. M. Rothstein, W. K. Dewar, and D. Menemenlis, 2011: Numerical investigations of seasonal and interannual variability of North Pacific Subtropical Mode Water and its implications for Pacific climate variability. J. Climate, 24, 26482665, https://doi.org/10.1175/2010JCLI3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2017: ERA5 reanalysis. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 18 March 2019, https://doi.org/10.5065/D6X34W69.

    • Crossref
    • Export Citation
  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, https://doi.org/10.1175/JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herraiz-Borreguero, L., and S. R. Rintoul, 2011: Subantarctic Mode Water: Distribution and circulation. Ocean Dyn., 61, 103126, https://doi.org/10.1007/s10236-010-0352-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., and M. N. Raphael, 2010: Characterizing the zonally asymmetric component of the SH circulation. Climate Dyn., 35, 859873, https://doi.org/10.1007/s00382-009-0663-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. C., A. J. S. Meijers, E. Shuckburgh, J.-B. Sallée, P. Haynes, E. K. McAufield, and M. R. Mazloff, 2016: How does Subantarctic Mode Water ventilate the Southern Hemisphere subtropics? J. Geophys. Res. Oceans, 121, 65586582, https://doi.org/10.1002/2016JC011680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keppler, L., and P. Landschützer, 2019: Regional wind variability modulates the Southern Ocean carbon sink. Sci. Rep., 9, 73847393, https://doi.org/10.1038/s41598-019-43826-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., R. Morrow, T. Penduff, and M. Juza, 2010: Origin and mechanism of Subantarctic Mode Water formation and transformation in the southern Indian Ocean. Ocean Dyn., 60, 563583, https://doi.org/10.1007/s10236-010-0276-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, https://doi.org/10.1029/98RG02739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M., 1977: Subantarctic mode water. Deep-Sea Res., 24, 103119.

  • McCartney, M., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40, 427464.

  • Meijers, A., I. Cerovečki, B. A. King, and V. M. Tamsitt, 2019: A see-saw in Pacific Subantarctic Mode Water formation driven by atmospheric modes. Geophys. Res. Lett., 46, 13 15213 160, https://doi.org/10.1029/2019GL085280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. N. Garabato, A. L. Gordon, and G. C. Johnson, 2008: Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995–2005. J. Climate, 21, 33273343, https://doi.org/10.1175/2007JCLI2238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., L. Jullion, D. P. Stevens, K. J. Heywood, and B. A. King, 2009: Variability of Subantarctic Mode Water and Antarctic Intermediate Water in the Drake Passage during the late-twentieth and early-twenty-first centuries. J. Climate, 22, 36613688, https://doi.org/10.1175/2009JCLI2621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portela, E., N. Kolodziejczyk, C. Maes, and V. Thierry, 2020: Interior water-mass variability in the Southern Hemisphere oceans during the last decade. J. Phys. Oceanogr., 50, 361381, https://doi.org/10.1175/JPO-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2004: A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31, L23212, https://doi.org/10.1029/2004GL020365.

  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32, 13081321, https://doi.org/10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Sallée, J., K. Speer, and S. Rintoul, 2010a: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J., K. Speer, S. Rintoul, and S. Wijffels, 2010b: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 5660, https://doi.org/10.1038/nature02127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., C. M. Bitz, and K. C. Armour, 2017: Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett., 44, 90089019, https://doi.org/10.1002/2017GL074691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., I. Cerovečki, S. Josey, and S. T. Gille, 2020: Mooring observations of air–sea heat fluxes in two Subantarctic Mode Water formation regions. J. Climate, 33, 27572777, https://doi.org/10.1175/JCLI-D-19-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, https://doi.org/10.1002/joc.965.

  • van Loon, H., and R. Jenne, 1972: The zonal harmonic standing waves in the Southern Hemisphere. J. Geophys. Res., 77, 9921003, https://doi.org/10.1029/JC077i006p00992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivier, F., D. Iudicone, F. Busdraghi, and Y.-H. Park, 2010: Dynamics of sea-surface temperature anomalies in the Southern Ocean diagnosed from a 2D mixed-layer model. Climate Dyn., 34, 153184, https://doi.org/10.1007/s00382-009-0724-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. L. Bindoff, and J. A. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400, 440443, https://doi.org/10.1038/22733.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 348 0 0
Full Text Views 559 282 26
PDF Downloads 381 135 15