• Acevedo, W., B. Fallah, S. Reich, and U. Cubasch, 2017: Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model. Climate Past, 13, 545557, https://doi.org/10.5194/cp-13-545-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, M., and Coauthors, 2013: Continental-scale temperature variability during the past two millennia. Nat. Geosci., 6, 339346, https://doi.org/10.1038/ngeo1834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ammann, C., 2008: The paleoclimate reconstruction challenge. PAGES News, 16, 4, https://doi.org/10.22498/pages.16.1.4.

  • Ammann, C., and E. R. Wahl, 2007: The importance of the geophysical context in statistical evaluations of climate reconstruction procedures. Climatic Change, 85, 7188, https://doi.org/10.1007/s10584-007-9276-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., and N. McKay, 2014: PAGES2k: Advances in climate field reconstructions. Past Global Changes Mag., 22, 98, https://doi.org/10.22498/pages.22.2.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., and Coauthors, 2017: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quat. Sci. Rev., 163, 122, https://doi.org/10.1016/j.quascirev.2017.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, A., 1968: A square root formulation of the Kalman covariance equations. AIAA J., 6, 11651166, https://doi.org/10.2514/3.4696.

  • Annan, J., and J. Hargreaves, 2012: Identification of climatic state with limited proxy data. Climate Past, 8, 11411151, https://doi.org/10.5194/cp-8-1141-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhend, J., J. Franke, D. Folini, M. Wild, and S. Brönnimann, 2012: An ensemble-based approach to climate reconstructions. Climate Past, 8, 963976, https://doi.org/10.5194/cp-8-963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Björklund, J., and Coauthors, 2014: Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate Past, 10, 877885, https://doi.org/10.5194/cp-10-877-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, R., P. D. Jones, J. Hiebl, D. Frank, M. Brunetti, and M. Maugeri, 2010: The early instrumental warm-bias: A solution for long central European temperature series 1760–2007. Climatic Change, 101, 4167, https://doi.org/10.1007/s10584-009-9649-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., 2003: Bayesian filtering: From Kalman filters to particle filters, and beyond. Adaptive Systems Laboratory Tech. Rep., 69 pp., http://140.113.144.123/EnD106/Bayesian%20filtering-%20from%20Kalman%20filters%20to%20Particle%20filters%20and%20beyond.pdf.

  • Christiansen, B., 2008: Volcanic eruptions, large-scale modes in the Northern Hemisphere, and the El Niño–Southern Oscillation. J. Climate, 21, 910922, https://doi.org/10.1175/2007JCLI1657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., and F. C. Ljungqvist, 2017: Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys., 55, 4096, https://doi.org/10.1002/2016RG000521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., T. Schmith, and P. Thejll, 2009: A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness. J. Climate, 22, 951976, https://doi.org/10.1175/2008JCLI2301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comboul, M., J. Emile-Geay, G. J. Hakim, and M. N. Evans, 2015: Paleoclimate sampling as a sensor placement problem. J. Climate, 28, 77177740, https://doi.org/10.1175/JCLI-D-14-00802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. R. Briffa, and P. D. Jones, 1994: Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol., 14, 379402, https://doi.org/10.1002/joc.3370140404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12, 11451162, https://doi.org/10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. J. Anchukaitis, B. M. Buckley, R. D. D’Arrigo, G. C. Jacoby, and W. E. Wright, 2010a: Asian monsoon failure and megadrought during the last millennium. Science, 328, 486489, https://doi.org/10.1126/science.1185188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, R. R. Heim Jr., R. S. Vose, C. Herweijer, and C. Woodhouse, 2010b: Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci., 25, 4861, https://doi.org/10.1002/jqs.1303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and Coauthors, 2013: Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 CE. Climate Dyn., 41, 29572972, https://doi.org/10.1007/s00382-012-1611-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cort, G. D., M. Chevalier, S. L. Burrough, C. Y. Chen, and S. P. Harrison, 2021: An uncertainty-focused database approach to extract spatiotemporal trends from qualitative and discontinuous lake-status histories. Quat. Sci. Rev., 258, 106870, https://doi.org/10.1016/j.quascirev.2021.106870.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, S. G., N. J. Steiger, J. Emile-Geay, and G. J. Hakim, 2016: On the utility of proxy system models for estimating climate states over the Common Era. J. Adv. Model. Earth Syst., 8, 11641179, https://doi.org/10.1002/2016MS000677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, https://doi.org/10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Silva, S. L., and G. A. Zielinski, 1998: Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature, 393, 455458, https://doi.org/10.1038/30948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubinkina, S., and H. Goosse, 2013: An assessment of particle filtering methods and nudging for climate state reconstructions. Climate Past, 9, 11411152, https://doi.org/10.5194/cp-9-1141-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and Coauthors, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., D. C. Frank, R. J. Wilson, and K. R. Briffa, 2005: Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett., 32, L07711, https://doi.org/10.1029/2004GL021236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., and Coauthors, 2018: Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia, 50, 8190, https://doi.org/10.1016/j.dendro.2018.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M. N., A. Kaplan, M. A. Cane, and R. Villalba, 2001: Globality and optimality in climate field reconstructions from proxy data. Interhemispheric Climate Linkages, V. Markgraf, Ed., Elsevier, 53–55.

    • Crossref
    • Export Citation
  • Evans, M. N., A. Kaplan, and M. A. Cane, 2002: Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography, 17, 1007, https://doi.org/10.1029/2000PA000590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M. N., S. E. Tolwinski-Ward, D. M. Thompson, and K. J. Anchukaitis, 2013: Applications of proxy system modeling in high resolution paleoclimatology. Quat. Sci. Rev., 76, 1628, https://doi.org/10.1016/j.quascirev.2013.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, D., U. Büntgen, R. Böhm, M. Maugeri, and J. Esper, 2007: Warmer early instrumental measurements versus colder reconstructed temperatures: Shooting at a moving target. Quat. Sci. Rev., 26, 32983310, https://doi.org/10.1016/j.quascirev.2007.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, D., J. Esper, E. Zorita, and R. Wilson, 2010: A noodle, hockey stick, and spaghetti plate: A perspective on high-resolution paleoclimatology. Wiley Interdiscip. Rev.: Climate Change, 1, 507516, https://doi.org/10.1002/wcc.53.

    • Search Google Scholar
    • Export Citation
  • Franke, J., V. Valler, S. Brönnimann, R. Neukom, and F. Jaume-Santero, 2020: The importance of input data quality and quantity in climate field reconstructions—Results from the assimilation of various tree-ring collections. Climate Past, 16, 10611074, https://doi.org/10.5194/cp-16-1061-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, H. C., 1991: Reconstructing Large-Scale Climatic Patterns from Tree-Ring Data: A Diagnostic Analysis. University of Arizona Press, 286 pp.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gennaretti, F., D. Arseneault, A. Nicault, L. Perreault, and Y. Bégin, 2014: Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc. Natl. Acad. Sci. USA, 111, 10 07710 082, https://doi.org/10.1073/pnas.1324220111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, E. C., B. Rajagopalan, P. Molnar, and T. M. Marchitto, 2016: Reduced-dimension reconstruction of the equatorial pacific SST and zonal wind fields over the past 10,000 years using Mg/Ca and alkenone records. Paleoceanography, 31, 928952, https://doi.org/10.1002/2016PA002948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., 2016: An additional step toward comprehensive paleoclimate reanalyses. J. Adv. Model. Earth Syst., 8, 15011503, https://doi.org/10.1002/2016MS000739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., 2017: Reconstructed and simulated temperature asymmetry between continents in both hemispheres over the last centuries. Climate Dyn., 48, 14831501, https://doi.org/10.1007/s00382-016-3154-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., J. Guiot, M. E. Mann, S. Dubinkina, and Y. Sallaz-Damaz, 2012: The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation. Global Planet. Change, 84–85, 3547, https://doi.org/10.1016/j.gloplacha.2011.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N., and E. Wahl, 2011: Paleoclimate reconstruction challenge. PAGES News, 19, 7172.

  • Guillet, S., and Coauthors, 2017: Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci., 10, 123128, https://doi.org/10.1038/ngeo2875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillot, D., B. Rajaratnam, and J. Emile-Geay, 2015: Statistical paleoclimate reconstructions via Markov random fields. Ann. Appl. Stat., 9, 324352, https://doi.org/10.1214/14-AOAS794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., J. Emile-Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. J. Geophys. Res., 121, 67456764, https://doi.org/10.1002/2016JD024751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haurwitz, M. W., and G. W. Brier, 1981: A critique of the superposed epoch analysis method: Its application to solar–weather relations. Mon. Wea. Rev., 109, 20742079, https://doi.org/10.1175/1520-0493(1981)109<2074:ACOTSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and P. Stott, 2014: From past to future warming. Science, 343, 844845, https://doi.org/10.1126/science.1249368.

  • Hegerl, G. C., K. Hasselmann, U. Cubasch, J. F. Mitchell, E. Roeckner, R. Voss, and J. Waszkewitz, 1997: Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change. Climate Dyn., 13, 613634, https://doi.org/10.1007/s003820050186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, S. K. Baum, K.-Y. Kim, and W. T. Hyde, 2003: Detection of volcanic, solar and greenhouse gas signals in paleo-reconstructions of Northern Hemispheric temperature. Geophys. Res. Lett., 30, 1242, https://doi.org/10.1029/2002GL016635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, M. Allen, W. T. Hyde, H. N. Pollack, J. Smerdon, and E. Zorita, 2007: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650666, https://doi.org/10.1175/JCLI4011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., and C. Ammann, 2009: The future of the past—An earth system framework for high resolution paleoclimatology: Editorial essay. Climatic Change, 94, 247259, https://doi.org/10.1007/s10584-009-9588-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, D., 2014: A community-driven framework for climate reconstructions. Eos, Trans. Amer. Geophys. Union, 95, 361362, https://doi.org/10.1002/2014EO400001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavigne, F., and Coauthors, 2013: Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl. Acad. Sci. USA, 110, 16 74216 747, https://doi.org/10.1073/pnas.1307520110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2008: How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, https://doi.org/10.1029/2008GL034864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., Z. Liu, and F. Lu, 2017: A systematic comparison of particle filter and EnKF in assimilating time-averaged observations. J. Geophys. Res., 122, 13 15513 173, https://doi.org/10.1002/2017JD026798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and S. Rutherford, 2002: Climate reconstruction using ‘pseudoproxies.’ Geophys. Res. Lett., 29, 1501, https://doi.org/10.1029/2001GL014554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779787, https://doi.org/10.1038/33859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and Coauthors, 2009: Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326, 12561260, https://doi.org/10.1126/science.1177303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127, https://doi.org/10.1016/S1463-5003(02)00015-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 383–464.

  • Matsikaris, A., M. Widmann, and J. H. Jungclaus, 2015: On-line and off-line data assimilation in palaeoclimatology: A case study. Climate Past, 11, 8193, https://doi.org/10.5194/cp-11-81-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarroll, D., E. Pettigrew, A. Luckman, F. Guibal, and J.-L. Edouard, 2002: Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arct. Antarct. Alp. Res., 34, 450453, https://doi.org/10.1080/15230430.2002.12003516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. M. Ammann, J. M. Arblaster, T. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings in twentieth-century climate. J. Climate, 17, 37213727, https://doi.org/10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meko, D., 1997: Dendroclimatic reconstruction with time varying predictor subsets of tree indices. J. Climate, 10, 687696, https://doi.org/10.1175/1520-0442(1997)010<0687:DRWTVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukom, R., N. Steiger, J. J. Gómez-Navarro, J. Wang, and J. P. Werner, 2019: No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 571, 550554, https://doi.org/10.1038/s41586-019-1401-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okazaki, A., and K. Yoshimura, 2017: Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction. Climate Past, 13, 379393, https://doi.org/10.5194/cp-13-379-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., J. S. Allen, R. N. Miller, G. D. Egbert, and P. M. Kosro, 2002: Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107, 3122, https://doi.org/10.1029/2000JC000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, https://doi.org/10.1175/BAMS-D-14-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D., 1994: Effects of changing exposure of thermometers at land stations. Int. J. Climatol., 14, 131, https://doi.org/10.1002/joc.3370140102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, W. A., and G. J. Hakim, 2017: Reconstructing paleoclimate fields using online data assimilation with a linear inverse model. Climate Past, 13, 421436, https://doi.org/10.5194/cp-13-421-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phipps, S. J., and Coauthors, 2013: Paleoclimate data–model comparison and the role of climate forcings over the past 1500 years. J. Climate, 26, 69156936, https://doi.org/10.1175/JCLI-D-12-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, https://doi.org/10.1029/1998RG000054.

  • Rohde, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinf. Geostat.: Overview, 1, 20100, https://doi.org/10.4172/gigs.1000103.

    • Search Google Scholar
    • Export Citation
  • Rutherford, S., M. Mann, T. Delworth, and R. Stouffer, 2003: Climate field reconstruction under stationary and nonstationary forcing. J. Climate, 16, 462479, https://doi.org/10.1175/1520-0442(2003)016<0462:CFRUSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydval, M., L.-Å. Larsson, L. McGlynn, B. E. Gunnarson, N. J. Loader, G. H. Young, and R. Wilson, 2014: Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32, 191204, https://doi.org/10.1016/j.dendro.2014.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, https://doi.org/10.1029/2008JD011222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2001: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Climate, 14, 853871, https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., G. C. Hegerl, M. E. Mann, S. F. B. Tett, and S. J. Phipps, 2013: Separating forced from chaotic climate variability over the past millennium. J. Climate, 26, 69546973, https://doi.org/10.1175/JCLI-D-12-00826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweingruber, F., H. Fritts, O. Bräker, L. Drew, and E. Schär, 1978: The x-ray technique as applied to dendroclimatology. Tree-Ring Bull., 38, 6191.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Graham, C. Herweijer, A. L. Gordon, Y. Kushnir, and E. Cook, 2007: Blueprints for medieval hydroclimate. Quat. Sci. Rev., 26, 23222336, https://doi.org/10.1016/j.quascirev.2007.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigl, M., and Coauthors, 2015: Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543549, https://doi.org/10.1038/nature14565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., 2012: Climate models as a test bed for climate reconstruction methods: Pseudo-proxy experiments. Wiley Interdiscip. Rev.: Climate Change, 3, 6377, https://doi.org/10.1002/wcc.149.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., and H. N. Pollack, 2016: Reconstructing Earth’s surface temperature over the past 2000 years: The science behind the headlines. Wiley Interdiscip. Rev.: Climate Change, 7, 746771, https://doi.org/10.1002/wcc.418.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, E. Zorita, J. F. González-Rouco, and M. Evans, 2011: Spatial performance of four climate field reconstruction methods targeting the Common Era. Geophys. Res. Lett., 38, L11705, https://doi.org/10.1029/2011GL047372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and Coauthors, 2011: Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction. Bull. Amer. Meteor. Soc., 92, 141156, https://doi.org/10.1175/2010BAMS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, N. J., and J. E. Smerdon, 2017: A pseudoproxy assessment of data assimilation for reconstructing the atmosphere–ocean dynamics of hydroclimate extremes. Climate Past, 13, 14351449, https://doi.org/10.5194/cp-13-1435-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, N. J., G. J. Hakim, E. J. Steig, D. S. Battisti, and G. H. Roe, 2014: Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Climate, 27, 426441, https://doi.org/10.1175/JCLI-D-12-00693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, N. J., J. E. Smerdon, E. R. Cook, and B. I. Cook, 2018: A reconstruction of global hydroclimate and dynamical variables over the Common Era. Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, https://doi.org/10.1029/2005JD006286.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, https://doi.org/10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and S. F. Tett, 1998: Scale-dependent detection of climate change. J. Climate, 11, 32823294, https://doi.org/10.1175/1520-0442(1998)011<3282:SDDOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and G. S. Jones, 2009: Variability of high latitude amplification of anthropogenic warming. Geophys. Res. Lett., 36, L10701, https://doi.org/10.1029/2009GL037698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, https://doi.org/10.1002/wcc.34.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H. S., and Coauthors, 2014: Arctic Holocene proxy climate database—New approaches to assessing geochronological accuracy and encoding climate variables. Climate Past, 10, 16051631, https://doi.org/10.5194/cp-10-1605-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tardif, R., and Coauthors, 2019: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Climate Past, 15, 12511273, https://doi.org/10.5194/cp-15-1251-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., P. F. Craigmile, M. Haran, B. Li, E. Mannshardt, and B. Rajaratnam, 2012: Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev., 35, 122, https://doi.org/10.1016/j.quascirev.2012.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valler, V., J. Franke, and S. Brönnimann, 2019: Impact of different estimations of the background-error covariance matrix on climate reconstructions based on data assimilation. Climate Past, 15, 14271441, https://doi.org/10.5194/cp-15-1427-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., and J. Barkmeijer, 2005: Bjerknes’ hypothesis on the coldness during AD 1790–1820 revisited. Climate Dyn., 25, 537553, https://doi.org/10.1007/s00382-005-0053-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Emile-Geay, D. Guillot, J. E. Smerdon, and B. Rajaratnam, 2014: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Climate Past, 10, 119, https://doi.org/10.5194/cp-10-1-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Emile-Geay, D. Guillot, N. P. McKay, and B. Rajaratnam, 2015: Fragility of reconstructed temperature patterns over the common era: Implications for model evaluation. Geophys. Res. Lett., 42, 71627170, https://doi.org/10.1002/2015GL065265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widmann, M., H. Goosse, G. van der Schrier, R. Schnur, and J. Barkmeijer, 2010: Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Climate Past, 6, 627644, https://doi.org/10.5194/cp-6-627-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., and L. M. Berliner, 2007: A Bayesian tutorial for data assimilation. Physica D, 230, 116, https://doi.org/10.1016/j.physd.2006.09.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., and Coauthors, 2016: Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev., 134, 118, https://doi.org/10.1016/j.quascirev.2015.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., and Coauthors, 2019: Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene, 29, 18171830, https://doi.org/10.1177/0959683619862037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, F., J. Emile-Geay, G. J. Hakim, J. King, and K. J. Anchukaitis, 2020: Resolving the differences in the simulated and reconstructed temperature response to volcanism. Geophys. Res. Lett., 47, e2019GL086908, https://doi.org/10.1002/essoar.10501607.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zorita, E., F. González-Rouco, and S. Legutke, 2003: Testing the approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J. Climate, 16, 13781390, https://doi.org/10.1175/1520-0442(2003)16<1378:TTMEAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 427 427 60
Full Text Views 156 156 33
PDF Downloads 200 200 43

A Data Assimilation Approach to Last Millennium Temperature Field Reconstruction Using a Limited High-Sensitivity Proxy Network

View More View Less
  • 1 a Department of Geosciences, University of Arizona, Tucson, Arizona
  • | 2 b Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
  • | 3 c School of Geography, Development, and Environment, University of Arizona, Tucson, Arizona
  • | 4 d Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 5 e Department of Earth Sciences, University of Southern California, Los Angeles, California
  • | 6 f School of Earth and Environmental Sciences, University of St Andrews, St Andrews, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

We use the Northern Hemisphere Tree-Ring Network Development (NTREND) tree-ring database to examine the effects of using a small, highly sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudoproxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on point-by-point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates, and these identify tree-line North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multimodel mean reconstruction to five existing paleotemperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan King, jonking93@email.arizona.edu

Abstract

We use the Northern Hemisphere Tree-Ring Network Development (NTREND) tree-ring database to examine the effects of using a small, highly sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudoproxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on point-by-point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates, and these identify tree-line North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multimodel mean reconstruction to five existing paleotemperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan King, jonking93@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 8.02 MB)
Save