• Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Recent widening of the tropical belt from global tropopause statistics: Sensitivities. J. Geophys. Res. Atmos., 115, D23109, https://doi.org/10.1029/2010JD014664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and et al. , 2013: The Aqua-Planet Experiment (APE): CONTROL SST simulation. J. Meteor. Soc. Japan, 91A, 1756, https://doi.org/10.2151/jmsj.2013-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2013: On the speed of the eddy-driven jet and the width of the Hadley cell in the Southern Hemisphere. J. Climate, 26, 34503465, https://doi.org/10.1175/JCLI-D-12-00414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2020: Linking midlatitudes eddy heat flux trends and polar amplification. npj Climate Atmos. Sci., 3, 8, https://doi.org/10.1038/s41612-020-0111-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. A. Plumb, 2009: Quantifying the eddy feedback and the persistence of the zonal index in an idealized atmospheric model. J. Atmos. Sci., 66, 37073720, https://doi.org/10.1175/2009JAS3165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, https://doi.org/10.1175/JAS3995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and L. Sun, 2013: Delineating the eddy–zonal flow interaction in the atmospheric circulation response to climate forcing: Uniform SST warming in an idealized aquaplanet model. J. Atmos. Sci., 70, 22142233, https://doi.org/10.1175/JAS-D-12-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., P. Zhang, and J. Lu, 2020: Sensitivity of the latitude of the westerly jet stream to climate forcing. Geophys. Res. Lett., 47, e2019GL086563, https://doi.org/10.1029/2019GL086563.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, I. M. Held, and P. J. Phillipps, 2018: The role of the water vapor feedback in the ITCZ response to hemispherically asymmetric forcings. J. Climate, 31, 36593678, https://doi.org/10.1175/JCLI-D-17-0723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, https://doi.org/10.1073/pnas.1310344110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65, 10491062, https://doi.org/10.1175/2007JAS2373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and S. M. Davis, 2020: Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys., 20, 52495268, https://doi.org/10.5194/acp-20-5249-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., and Z. Kuang, 2016: The linear response function of an idealized atmosphere. Part I: Construction using Green’s functions and applications. J. Atmos. Sci., 73, 34233439, https://doi.org/10.1175/JAS-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The General Circulation of the Atmosphere. Geophysical Fluid Dynamics program, Woods Hole Oceanographic Institution, 70 pp., https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/ih/lectures/woods_hole.pdf.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2019: 100 years of progress in understanding the general circulation of the atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., 6.1–6.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0017.1.

    • Crossref
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds. Cambridge University Press, 1535 pp.

  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 37103720, https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, https://doi.org/10.1029/2010GL042873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., and G. K. Vallis, 2012: The relationship between the speed and the latitude of an eddy-driven jet in a stirred barotropic model. J. Atmos. Sci., 69, 32513263, https://doi.org/10.1175/JAS-D-11-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., G. K. Vallis, S. M. Dean, and J. A. Renwick, 2011: Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780, https://doi.org/10.1175/2010JCLI3738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and M. L. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, https://doi.org/10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2015: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA, 112, 36303635, https://doi.org/10.1073/pnas.1418682112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503, https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014: Understanding midlatitude jet variability and change using Rossby wave chromatography: Poleward-shifted jets in response to external forcing. J. Atmos. Sci., 71, 23702389, https://doi.org/10.1175/JAS-D-13-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. Atmos., 112, https://doi.org/10.1029/2006JD008087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, https://doi.org/10.1175/2008JCLI2200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., L. Sun, Y. Wu, and G. Chen, 2014: The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming–like thermal forcing. J. Climate, 27, 22972316, https://doi.org/10.1175/JCLI-D-13-00372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2017: Storm-track shifts under climate change: Toward a mechanistic understanding using baroclinic mean available potential energy. J. Atmos. Sci., 74, 93110, https://doi.org/10.1175/JAS-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and M. Henry, 2018: Simple estimates of polar amplification in moist diffusive energy balance models. J. Climate, 31, 58115824, https://doi.org/10.1175/JCLI-D-17-0578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740753, https://doi.org/10.1175/JCLI-D-11-00716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., and I. M. Held, 2018: Modeling water vapor and clouds as passive tracers in an idealized GCM. J. Climate, 31, 775786, https://doi.org/10.1175/JCLI-D-16-0812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Chen, and J. D. Neelin, 2019: Changes in frequency of large precipitation accumulations over land in a warming climate from the CESM large ensemble: The roles of moisture, circulation, and duration. J. Climate, 32, 53975416, https://doi.org/10.1175/JCLI-D-18-0600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180, https://doi.org/10.1073/pnas.1011547107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paynter, D., and V. Ramaswamy, 2014: Investigating the impact of the shortwave water vapor continuum upon climate simulations using GFDL global models. J. Geophys. Res. Atmos., 119, 10 72010 737, https://doi.org/10.1002/2014JD021881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., and B. G. Liepert, 2007: Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett., 34, L22701, https://doi.org/10.1029/2007GL031243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2008: The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 38803898, https://doi.org/10.1175/2008JAS2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, https://doi.org/10.1175/2011JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G., 2009: Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci., 37, 93115, https://doi.org/10.1146/annurev.earth.061008.134734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, https://doi.org/10.1029/2012GL052910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43, 28962903, https://doi.org/10.1002/2016GL067989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., G. Chen, and J. Lu, 2013: Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J. Atmos. Sci., 70, 24872504, https://doi.org/10.1175/JAS-D-12-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., Y. Hu, and J. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 33373350, https://doi.org/10.1007/s00382-015-2772-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, https://doi.org/10.1038/ngeo1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and et al. , 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, 31, 75657581, https://doi.org/10.1175/JCLI-D-18-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63, 19541961, https://doi.org/10.1175/JAS3762.1.

  • Wright, J. S., A. Sobel, and J. Galewsky, 2010: Diagnosis of zonal mean relative humidity changes in a warmer climate. J. Climate, 23, 45564569, https://doi.org/10.1175/2010JCLI3488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., M. Ting, R. Seager, H.-P. Huang, and M. A. Cane, 2011: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 5372, https://doi.org/10.1007/s00382-010-0776-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, M. Ting, N. Naik, and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879, https://doi.org/10.1175/JCLI-D-11-00284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 186 186 40
Full Text Views 62 62 17
PDF Downloads 82 82 24

Quantifying the Mechanisms of Atmospheric Circulation Response to Greenhouse Gas Increases in a Forcing–Feedback Framework

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 b Department of Meteorology and Atmospheric Sciences, Pennsylvania State University, University Park, Pennsylvania
  • | 3 c NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing–feedback analysis on circulation response to increasing CO2 concentration in an aquaplanet atmospheric model. This forcing–feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing–feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Pengfei Zhang, pfz5053@psu.edu; Gang Chen, gchenpu@atmos.ucla.edu

Abstract

While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing–feedback analysis on circulation response to increasing CO2 concentration in an aquaplanet atmospheric model. This forcing–feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing–feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Pengfei Zhang, pfz5053@psu.edu; Gang Chen, gchenpu@atmos.ucla.edu
Save