• Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergman, T., V. M. Kerminen, H. Korhonen, and K. J. Lehtinen, 2012: Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model. Geosci. Model Dev., 5, 845868, https://doi.org/10.5194/gmd-5-845-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2018: The role of extratropical ocean warming in the coupled climate response to Arctic sea ice loss. J. Climate, 31, 91939206, https://doi.org/10.1175/JCLI-D-18-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2019: Influence of Arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys. Res. Lett., 46, 22132221, https://doi.org/10.1029/2018GL081469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and M. Song, 2020: Little influence of Arctic amplification on mid-latitude climate. Nat. Climate Change, 10, 231237, https://doi.org/10.1038/s41558-020-0694-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Deng, 2021: Arctic amplification weakens the variability of daily temperatures over northern middle-high latitudes. J. Climate, 34, 25912609, https://doi.org/10.1175/JCLI-D-20-0514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, 2012: Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett., 7, 034011, https://doi.org/10.1088/1748-9326/7/3/034011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, https://doi.org/10.1002/2016GL067792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, F. Song, and J. Lu, 2018: Roles of SST versus internal atmospheric variability in winter extreme precipitation variability along the U.S. West Coast. J. Climate, 31, 80398058, https://doi.org/10.1175/JCLI-D-18-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Li, and Y. Li, 2010: A monsoon-like southwest Australian circulation and its relation with rainfall in southwest western Australia. J. Climate, 23, 13341353, https://doi.org/10.1175/2009JCLI2837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and et al. , 2014: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., and et al. , 2018: Quantifying climate feedbacks in polar regions. Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernstrom, E. Kallen, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 5356, https://doi.org/10.1038/nature06502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, W., X. Jiang, X. Ren, G. Chen, and Q. Ding, 2020: Role of atmospheric variability in driving the “warm-Arctic, cold-continent” pattern over the North America sector and sea ice variability over the Chukchi-Bering Sea. Geophys. Res. Lett., 47, e2020GL088599, https://doi.org/10.1029/2020GL088599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., C. Deser, and B. J. Soden, 2017: Atmospheric and oceanic origins of tropical precipitation variability. J. Climate, 30, 31973217, https://doi.org/10.1175/JCLI-D-16-0714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., Xu, X., Furevik, T., and Gao, Y., 2020: Eurasian cooling linked to the vertical distribution of Arctic warming. Geophys. Res. Lett., 47, e2020GL087212, https://doi.org/10.1029/2020GL087212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and J. Stroeve, 2011: Changing seasonal sea ice predictor relationships in a changing Arctic climate. Geophys. Res. Lett., 38, L18501, https://doi.org/10.1029/2011GL049303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and T. Koenigk, 2009: Low-frequency variability of the Arctic climate: The role of oceanic and atmospheric heat transport variations. Climate Dyn., 34, 265279, https://doi.org/10.1007/s00382-009-0569-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, https://doi.org/10.1007/BF00139728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., 38, L15708, https://doi.org/10.1029/2011GL048008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., and B.-M. Kim, 2017: Relative contributions of atmospheric energy transport and sea ice loss to the recent warm Arctic winter. J. Climate, 30, 74417450, https://doi.org/10.1175/JCLI-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnard, C., C. M. Zdanowicz, D. A. Fisher, E. Isaksson, A. de Vernal, and L. G. Thompson, 2011: Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479, 509512, https://doi.org/10.1038/nature10581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., and et al. , 2018: Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas. Climate Dyn., 52, 31113137, https://doi.org/10.1007/s00382-018-4305-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and et al. , 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, https://doi.org/10.1029/2010GL045022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, A., S. Yang, and E. Kaas, 2017: Sea ice thickness and recent Arctic warming. Geophys. Res. Lett., 44, 409418, https://doi.org/10.1002/2016GL071274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., G. Matishov, D. Seidov, and I. Smolyar, 2009: Barents Sea multidecadal variability. Geophys. Res. Lett., 36, L19604, https://doi.org/10.1029/2009GL039847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., X. Wan, H. Wang, Y. J. Orsolini, Z. Cong, Y. Gao, and S. Kang, 2020: Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nat. Climate Change, 10, 10371044, https://doi.org/10.1038/s41558-020-0881-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-F., J. Yu, and Y. Li, 2013: Recent summer rainfall increase and surface cooling over northern Australia since the late 1970s: A response to warming in the tropical western Pacific. J. Climate, 26, 72217239, https://doi.org/10.1175/JCLI-D-12-00786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y.-C., and et al. , 2020: Quantification of the Arctic sea ice–driven atmospheric circulation variability in coordinated large ensemble simulations. Geophys. Res. Lett., 47, e2019GL085397, https://doi.org/10.1029/2019GL085397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messori, G., C. Woods, and R. Caballero, 2018: On the drivers of wintertime temperature extremes in the high Arctic. J. Climate, 31, 15971618, https://doi.org/10.1175/JCLI-D-17-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mewes, D., and C. Jacobi, 2019: Heat transport pathways into the Arctic and their connections to surface air temperatures. Atmos. Chem. Phys., 19, 39273937, https://doi.org/10.5194/acp-19-3927-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, M. W., D. V. Divine, T. Furevik, E. Jansen, M. Moros, and A. E. J. Ogilvie, 2014: A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett., 41, 463469, https://doi.org/10.1002/2013GL058084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioduszewski, J. R., S. Vavrus, M. Wang, M. Holland, and L. Landrum, 2019: Past and future interannual variability in Arctic sea ice in coupled climate models. Cryosphere, 13, 113124, https://doi.org/10.5194/tc-13-113-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, https://doi.org/10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortin, J., G. Svensson, R. G. Graversen, M.-L. Kapsch, J. C. Stroeve, and L. N. Boisvert, 2016: Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophys. Res. Lett., 43, 66366642, http://doi.org/10.1002/2016GL069330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C. C. W., and J. Quaas, 2012: Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Climate, 25, 49754992, https://doi.org/10.1175/JCLI-D-11-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 2009: Local and remote causes of the southern Australian autumn–winter rainfall decline, 1958–2007. Climate Dyn., 34, 835845, https://doi.org/10.1007/s00382-009-0527-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., R. G. Graversen, P. Uotila, T. Naakka, and T. Vihma, 2019: Strong dependence of wintertime Arctic moisture and cloud distributions on atmospheric large-scale circulation. J. Climate, 32, 87718790, https://doi.org/10.1175/JCLI-D-19-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and et al. , 2018: Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, J. M., J. A. Screen, and M. Collins, 2017: Ocean–atmosphere state dependence of the atmospheric response to Arctic sea ice loss. J. Climate, 30, 15371552, https://doi.org/10.1175/JCLI-D-16-0531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, https://doi.org/10.1175/JCLI-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, https://doi.org/10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and et al. , 2018: Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci., 11, 805812, https://doi.org/10.1038/s41561-018-0234-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 44074435, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinke, A., and et al. , 2019: Trends of vertically integrated water vapor over the Arctic during 1979–2016: Consistent moistening all over? J. Climate, 32, 60976116, https://doi.org/10.1175/JCLI-D-19-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al. , 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max-Planck-Institute for Meteorology Rep. 349, 140 pp., https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_995269.

  • Russotto, R. D., and M. Biasutti, 2020: Polar amplification as an inherent response of a circulating atmosphere: Results from the TRACMIP aquaplanets. Geophys. Res. Lett., 47, e2019GL086771, https://doi.org/10.1029/2019GL086771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010a: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010b: Increasing fall–winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and J. A. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, https://doi.org/10.1038/nclimate3011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, https://doi.org/10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and et al. , 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017: Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean–atmosphere coupling and the background state. J. Climate, 30, 45474565, https://doi.org/10.1175/JCLI-D-16-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, https://doi.org/10.1175/2010JCLI3817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, https://doi.org/10.1002/2016GL069024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate, 31, 78237843, https://doi.org/10.1175/JCLI-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Linden, E. C., R. Bintanja, W. Hazeleger, and R. G. Graversen, 2016: Low-frequency variability of surface air temperature over the Barents Sea: Causes and mechanisms. Climate Dyn., 47, 12471262, https://doi.org/10.1007/s00382-015-2899-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, B. Y., H. S. Min, B.-M. Kim, J.-H. Jeong, and J.-S. Kug, 2016: Sensitivity of Arctic warming to sea ice concentration. J. Geophys. Res. Atmos., 121, 69276942, https://doi.org/10.1002/2015JD023953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, https://doi.org/10.1029/2008GL035607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. Wu, 2012: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Climate Change, 3, 4751, https://doi.org/10.1038/nclimate1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 243 243 37
Full Text Views 70 70 8
PDF Downloads 92 92 9

Relative Contributions of Internal Atmospheric Variability and Surface Processes to the Interannual Variations in Wintertime Arctic Surface Air Temperatures

View More View Less
  • 1 a Zhejiang Institute of Meteorological Sciences, Hangzhou, China
  • | 2 b Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 c Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Superimposed on a warming trend, Arctic winter surface air temperature (SAT) exhibits substantial interannual variability, the underlying mechanisms of which are unclear, especially with regard to the role of sea ice variations and atmospheric processes. Here, atmospheric reanalysis data and idealized atmospheric model simulations are used to reveal the mechanisms by which sea ice variations and atmospheric anomalous conditions affect interannual variations in wintertime Arctic SAT. Results show that near-surface interannual warming in the Arctic is accompanied by comparable warming throughout large parts of the Arctic troposphere and large-scale anomalous atmospheric circulation patterns. Within the Arctic, changes in large-scale atmospheric circulations due to internal atmospheric variability explain a substantial fraction of interannual variation in SAT and tropospheric temperatures, which lead to an increase in moisture and downward longwave radiation, with the rest likely coming from sea ice–related and other surface processes. Arctic winter sea ice loss allows the ocean to release more heat and moisture, which enhances Arctic warming; however, this effect on SAT is confined to the ice-retreat area and has a limited influence on large-scale atmospheric circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenkai Li, wenkai@nuist.edu.cn

Abstract

Superimposed on a warming trend, Arctic winter surface air temperature (SAT) exhibits substantial interannual variability, the underlying mechanisms of which are unclear, especially with regard to the role of sea ice variations and atmospheric processes. Here, atmospheric reanalysis data and idealized atmospheric model simulations are used to reveal the mechanisms by which sea ice variations and atmospheric anomalous conditions affect interannual variations in wintertime Arctic SAT. Results show that near-surface interannual warming in the Arctic is accompanied by comparable warming throughout large parts of the Arctic troposphere and large-scale anomalous atmospheric circulation patterns. Within the Arctic, changes in large-scale atmospheric circulations due to internal atmospheric variability explain a substantial fraction of interannual variation in SAT and tropospheric temperatures, which lead to an increase in moisture and downward longwave radiation, with the rest likely coming from sea ice–related and other surface processes. Arctic winter sea ice loss allows the ocean to release more heat and moisture, which enhances Arctic warming; however, this effect on SAT is confined to the ice-retreat area and has a limited influence on large-scale atmospheric circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenkai Li, wenkai@nuist.edu.cn
Save