• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., and G. R. Foltz, 2014: Impacts of canonical and Modoki El Niño on tropical Atlantic SST. J. Geophys. Res. Oceans, 119, 777789, https://doi.org/10.1002/2013JC009476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., M. J. DeFlorio, A. J. Miller, and S. P. Xie, 2017: WES feedback and the Atlantic meridional mode: Observations and CMIP5 comparisons. Climate Dyn., 49, 16651679, https://doi.org/10.1007/s00382-016-3411-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreto, N. J., M. Mesquita, D. Mendes, M. H. Spyrides, G. U. Pedra, and P. S. Lucio, 2017: Maximum covariance analysis to identify intraseasonal oscillations over tropical Brazil. Climate Dyn., 49, 15831596, https://doi.org/10.1007/s00382-016-3401-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14, 42664291, https://doi.org/10.1175/1520-0442(2001)014<4266:OFOTWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328, https://doi.org/10.1038/nature05053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., 2002: Deconstructing Atlantic intertropical convergence zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, https://doi.org/10.1029/2000JD000307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, https://doi.org/10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., S. E. Zebiak, and M. A. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci., 58, 13711394, https://doi.org/10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res. Oceans, 102, 929945, https://doi.org/10.1029/96JC03296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Lian, J. Ying, J. Li, and G. Li, 2020: Do CMIP5 models show El Niño diversity? J. Climate, 33, 16191641, https://doi.org/10.1175/JCLI-D-18-0854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Cassou, H. Douville, A. Giannini, and F. J. Doblas-Reyes, 2017: Revisiting the ENSO teleconnection to the tropical North Atlantic. J. Climate, 30, 69456957, https://doi.org/10.1175/JCLI-D-16-0641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, S. E., and M. A. Saunders, 2001: North Atlantic Oscillation impact on tropical North Atlantic winter atmospheric variability. Geophys. Res. Lett., 28, 10151018, https://doi.org/10.1029/2000GL012449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2004: The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall. Climate Dyn., 22, 839855, https://doi.org/10.1007/s00382-004-0420-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, H. F., and D. Zanchettin, 2012: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res., 117, D01102, https://doi.org/10.1029/2011JD016493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. J. Dunstone, A. A. Scaife, D. M. Smith, S. Ineson, J. Lim, and D. Fereday, 2019: The impact of strong El Niño and La Niña events on the North Atlantic. Geophys. Res. Lett., 46, 28742883, https://doi.org/10.1029/2018GL081776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2000: Interannual and longer-term variability of upper air circulation in the Northeast Brazil–tropical Atlantic sector. J. Geophys. Res., 105, 73277335, https://doi.org/10.1029/1999JD901104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., 2002: The ENSO effect on the tropical Atlantic variability: A regionally coupled model study. Geophys. Res. Lett., 29, 2039, https://doi.org/10.1029/2002GL014872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and et al. , 2010: Influence of the state of the Indian Ocean dipole on the following years El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, L., and T. Li, 2019: Relative roles of El Niño-induced extratropical and tropical forcing in generating tropical North Atlantic (TNA) SST anomaly. Climate Dyn., 53, 37913804, https://doi.org/10.1007/s00382-019-04748-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Esteve, B., and D. I. Domeisen, 2018: The tropospheric pathway of the ENSO–North Atlantic teleconnection. J. Climate, 31, 45634584, https://doi.org/10.1175/JCLI-D-17-0716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Esteve, B., and D. I. Domeisen, 2019: Nonlinearity in the North Pacific atmospheric response to a linear ENSO forcing. Geophys. Res. Lett., 46, 22712281, https://doi.org/10.1029/2018GL081226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, https://doi.org/10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., B. Wang, K. H. Seo, J. S. Kug, Y. S. Choi, Y. Kosaka, and K. J. Ha, 2014: Future change of Northern Hemisphere summer tropical–extratropical teleconnection in CMIP5 models. J. Climate, 27, 36433664, https://doi.org/10.1175/JCLI-D-13-00261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. B. Enfield, and C. Wang, 2008: Why do some El Niños have no impact on tropical North Atlantic SST? Geophys. Res. Lett., 35, L16705, https://doi.org/10.1029/2008GL034734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and J. X. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661676, https://doi.org/10.1007/BF02915394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2007: The nonlinear transient atmospheric response to tropical forcing. J. Climate, 20, 56425665, https://doi.org/10.1175/2007JCLI1383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., B. Rodríguez-Fonseca, I. Richter, M. Martín-Rey, T. Losada, I. Polo, and N. S. Keenlyside, 2018: Equatorial Atlantic variability—Modes, mechanisms, and global teleconnections. Wiley Interdiscip. Rev.: Climate Change, 9, e527, https://doi.org/10.1002/wcc.527.

    • Search Google Scholar
    • Export Citation
  • Maldonado, T., A. Rutgersson, J. Amador, E. Alfaro, and B. Claremar, 2016: Variability of the Caribbean low-level jet during boreal winter: Large-scale forcings. Int. J. Climatol., 36, 19541969, https://doi.org/10.1002/joc.4472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathieu, P. P., R. T. Sutton, B. Dong, and M. Collins, 2004: Predictability of winter climate over the North Atlantic European region during ENSO events. J. Climate, 17, 19531974, https://doi.org/10.1175/1520-0442(2004)017<1953:POWCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mc Shine, N. D., R. M. Clarke, S. Gualdi, A. Navarra, and X. T. Chadee, 2019: Influences of the Atlantic and Pacific Oceans on rainy season precipitation for the southernmost Caribbean small island state, Trinidad. Atmosphere, 10, 707, https://doi.org/10.3390/atmos10110707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10, 409440, https://doi.org/10.1175/1520-0442(1997)010<0409:TTALCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21, 12111229, https://doi.org/10.1002/joc.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, https://doi.org/10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noreen, E. W., 1990: Computer-Intensive Methods for Testing Hypotheses: An Introduction. Wiley, 229 pp.

  • Riaz, S. M. F., M. J. Iqbal, and M. J. Baig, 2018: Influence of Siberian high on temperature variability over northern areas of South Asia. Meteor. Atmos. Phys., 130, 441457, https://doi.org/10.1007/s00703-017-0531-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S. P. Xie, Y. Morioka, T. Doi, B. Taguchi, and S. Behera, 2017: Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dyn., 48, 36153629, https://doi.org/10.1007/s00382-016-3289-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., S. Li, and S. Peng, 2003: Dynamical nonlinearity in the atmospheric response to Atlantic sea surface temperature anomalies. Geophys. Res. Lett., 30, 2038, https://doi.org/10.1029/2003GL018416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., and M. J. McPhaden, 2014: Why did the 2011–2012 la Niña cause a severe drought in the Brazilian Northeast? Geophys. Res. Lett., 41, 10121018, https://doi.org/10.1002/2013GL058703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., R. J. Haarsma, E. J. Campos, and T. Ambrizzi, 2011: The impacts of inter–El Niño variability on the tropical Atlantic and northeast Brazil climate. J. Climate, 24, 34023422, https://doi.org/10.1175/2011JCLI3983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., E. J. Campos, and R. Haarsma, 2015: The impact of ENSO on the South Atlantic subtropical dipole mode. J. Climate, 28, 26912705, https://doi.org/10.1175/JCLI-D-14-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Nino–Southern Oscillation. J. Climate, 13, 21772194, https://doi.org/10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2014a: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 25392552, https://doi.org/10.1007/s00382-014-2072-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2014b: The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM. Climate Dyn., 44, 191202, https://doi.org/10.1007/s00382-014-2133-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488, https://doi.org/10.1029/1999GL900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706, https://doi.org/10.1175/1520-0442(2002)015<2702:TESITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15, 23402358, https://doi.org/10.1175/1520-0442(2002)015<2340:DEFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2003: Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J. Climate, 16, 12831301, https://doi.org/10.1175/1520-0442-16.9.1283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2000: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1, 89100, https://doi.org/10.1006/asle.2000.0018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. S. Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27, 28612885, https://doi.org/10.1175/JCLI-D-13-00437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., R. R. Rodrigues, G. A. Meehl, S. McGregor, and M. H. England, 2016: How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Climate Dyn., 46, 18411860, https://doi.org/10.1007/s00382-015-2679-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, https://doi.org/10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds. Springer, 173–202.

    • Crossref
    • Export Citation
  • Wang, C., D. B. Enfield, S. K. Lee, and C. W. Landsea, 2006: Influences of the Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J. Climate, 19, 30113028, https://doi.org/10.1175/JCLI3770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic oscillation—Concepts and studies. Surv. Geophys., 22, 321381, https://doi.org/10.1023/A:1014217317898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whyte, F. S., M. A. Taylor, T. S. Stephenson, and J. D. Campbell, 2008: Features of the Caribbean low level jet. Int. J. Climatol., 28, 119128, https://doi.org/10.1002/joc.1510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., F. He, and Z. Liu, 2005: Coupled ocean-atmosphere response to north tropical Atlantic SST: Tropical Atlantic dipole and ENSO. Geophys. Res. Lett., 32, L21712, https://doi.org/10.1029/2005GL024222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and Z. He, 2019: Northern tropical Atlantic warming in El Niño decaying spring: Impacts of El Niño amplitude. Geophys. Res. Lett., 46, 14 07214 081, https://doi.org/10.1029/2019GL085840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116, D16116, https://doi.org/10.1029/2011JD015779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., M. Lin, and H. Sun, 2020: Impacts of different types of El Niño and La Niña on northern tropical Atlantic sea surface temperature. Climate Dyn., 54, 41474167, https://doi.org/10.1007/s00382-020-05220-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7, 17191736, https://doi.org/10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Z. Wang, M. F. Stuecker, A. G. Turner, F. F. Jin, and X. Geng, 2019: Impact of ENSO longitudinal position on teleconnections to the NAO. Climate Dyn., 52, 257274, https://doi.org/10.1007/s00382-018-4135-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 213 213 38
Full Text Views 92 92 15
PDF Downloads 117 117 19

Nonlinearity in the Pathway of El Niño–Southern Oscillation to the Tropical North Atlantic

View More View Less
  • 1 a Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • | 2 b Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
  • | 3 c ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

El Niño–Southern Oscillation can influence the tropical North Atlantic (TNA), leading to anomalous sea surface temperatures (SSTs) at a lag of several months. Several mechanisms have been proposed to explain this teleconnection. These mechanisms include both tropical and extratropical pathways, contributing to anomalous trade winds and static stability over the TNA region. The TNA SST response to ENSO has been suggested to be nonlinear. Yet the overall linearity of the ENSO–TNA teleconnection via the two pathways remains unclear. Here we use reanalysis data to confirm that the SST anomaly (SSTA) in the TNA is nonlinear with respect to the strength of the SST forcing in the tropical Pacific, as further increases in El Niño magnitudes cease to create further increases of the TNA SSTA. We further show that the tropical pathway is more linear than the extratropical pathway by subdividing the interbasin connection into extratropical and tropical pathways. This is confirmed by a climate model participating in the CMIP5. The extratropical pathway is modulated by the North Atlantic Oscillation (NAO) and the location of the SSTA in the Pacific, but this modulation insufficiently explains the nonlinearity in TNA SSTA. As neither extratropical nor tropical pathways can explain the nonlinearity, this suggests that external factors are at play. Further analysis shows that the TNA SSTA is highly influenced by the preconditioning of the tropical Atlantic SST. This preconditioning is found to be associated with the NAO through SST-tripole patterns.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 1 September 2021 to include a better resolution version of Fig. 2.

Corresponding author: Jake William Casselman, cjake@ethz.ch

Abstract

El Niño–Southern Oscillation can influence the tropical North Atlantic (TNA), leading to anomalous sea surface temperatures (SSTs) at a lag of several months. Several mechanisms have been proposed to explain this teleconnection. These mechanisms include both tropical and extratropical pathways, contributing to anomalous trade winds and static stability over the TNA region. The TNA SST response to ENSO has been suggested to be nonlinear. Yet the overall linearity of the ENSO–TNA teleconnection via the two pathways remains unclear. Here we use reanalysis data to confirm that the SST anomaly (SSTA) in the TNA is nonlinear with respect to the strength of the SST forcing in the tropical Pacific, as further increases in El Niño magnitudes cease to create further increases of the TNA SSTA. We further show that the tropical pathway is more linear than the extratropical pathway by subdividing the interbasin connection into extratropical and tropical pathways. This is confirmed by a climate model participating in the CMIP5. The extratropical pathway is modulated by the North Atlantic Oscillation (NAO) and the location of the SSTA in the Pacific, but this modulation insufficiently explains the nonlinearity in TNA SSTA. As neither extratropical nor tropical pathways can explain the nonlinearity, this suggests that external factors are at play. Further analysis shows that the TNA SSTA is highly influenced by the preconditioning of the tropical Atlantic SST. This preconditioning is found to be associated with the NAO through SST-tripole patterns.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 1 September 2021 to include a better resolution version of Fig. 2.

Corresponding author: Jake William Casselman, cjake@ethz.ch

Supplementary Materials

    • Supplemental Materials (PDF 9.14 MB)
Save