• Alexander, M., and T. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Andrews, M. B., J. R. Knight, A. A. Scaife, Y. Lu, T. Wu, L. J. Gray, and V. Schenzinger, 2019: Observed and simulated teleconnections between the stratospheric quasi-biennial oscillation and Northern Hemisphere winter atmospheric circulation. J. Geophys. Res., 124, 12191232, https://doi.org/10.1029/2018JD029368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140 (678), 121, https://doi.org/10.1002/qj.2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., T. G. Shepherd, and J. F. Scinocca, 2010: Influence of the quasi-biennial oscillation on the extratropical winter stratosphere in an atmospheric general circulation model and in reanalysis data. J. Atmos. Sci., 67, 14021419, https://doi.org/10.1175/2009JAS3292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and et al. , 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and et al. , 2018: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 10091032, https://doi.org/10.5194/gmd-11-1009-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canziani, P. O., and J. R. Holton, 1998: Kelvin Waves and the quasi-biennial oscillation: An observational analysis. J. Geophys. Res., 103, 31 50931 521, https://doi.org/10.1029/1998JD200021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., Y. Chen, J. Rao, S. Liu, S. Li, M. Ma, and Y. Wang, 2019: Statistical characteristics of major sudden stratospheric warming events in CESM1-WACCM: A comparison with the JRA55 and NCEP/NCAR reanalyses. Atmosphere, 10, 519, https://doi.org/10.3390/atmos10090519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and et al. , 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20, 470488, https://doi.org/10.1175/JCLI3994.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2010: Stratospheric bimodality: Can the equatorial QBO explain the regime behavior of the NH winter vortex? J. Climate, 23, 39533966, https://doi.org/10.1175/2010JCLI3495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2013: Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control. J. Atmos. Sci., 70, 37803798, https://doi.org/10.1175/JAS-D-12-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crooks, S. A., and L. J. Gray, 2005: Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J. Climate, 18, 9961015, https://doi.org/10.1175/JCLI-3308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, https://doi.org/10.1175/JAS3913.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011a: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 12731289, https://doi.org/10.1175/2011JAS3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011b: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 20262041, https://doi.org/10.1175/2011JAS3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh, 2012: Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? J. Atmos. Sci., 69, 17131733, https://doi.org/10.1175/JAS-D-11-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res., 123, 78557866, https://doi.org/10.1029/2018JD028724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. White, E. P. Gerber, M. Jucker, and M. Erez, 2020: The building blocks of Northern Hemisphere wintertime stationary waves. J. Climate, 33, 56115633, https://doi.org/10.1175/JCLI-D-19-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and et al. , 2016: Modeling the QBO—Improvements resulting from higher-model vertical resolution. J. Adv. Model. Earth Syst., 8, 10921105, https://doi.org/10.1002/2016MS000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Givon, Y., C. I. Garfinkel, and I. White, 2021: Transient extratropical response to solar ultraviolet radiation in the Northern Hemisphere winter. J. Climate, 34, 33673383, https://doi.org/10.1175/JCLI-D-20-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the quasi biennial oscillation. Atmos. Chem. Phys., 18, 82278247, https://doi.org/10.5194/acp-18-8227-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 36723685, https://doi.org/10.1175/JCLI3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and S. Abhik, 2018: Differences in vertical structure of the Madden-Julian oscillation associated with the quasi-biennial oscillation. Geophys. Res. Lett., 45, 44194428, https://doi.org/10.1029/2018GL077207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holt, L. A., M. J. Alexander, L. Coy, A. Molod, W. Putman, and S. Pawson, 2016: Tropical waves and the quasi-biennial oscillation in a 7-km global climate simulation. J. Atmos. Sci., 73, 37713783, https://doi.org/10.1175/JAS-D-15-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jucker, M., and E. P. Gerber, 2017: Untangling the annual cycle of the tropical tropopause layer with an idealized moist model. J. Climate, 30, 73397358, https://doi.org/10.1175/JCLI-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 1994: Upward transport of westerly momentum due to disturbances of the equatorial lower stratosphere in the period range of about 2 days: A Singapore data analysis for 1983–1993. J. Meteor. Soc. Japan, 72, 423432, https://doi.org/10.2151/jmsj1965.72.3_423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part II: Subtropical continent. J. Climate, 26, 754771, https://doi.org/10.1175/JCLI-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naoe, H., and K. Yoshida, 2019: Influence of quasi-biennial oscillation on the boreal winter extratropical stratosphere in QBOi experiments. Quart. J. Roy. Meteor. Soc., 145, 27552771, https://doi.org/10.1002/qj.3591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., L. Coy, S. Pawson, and L. R. Lait, 2016: The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett., 43, 87918797, https://doi.org/10.1002/2016GL070373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 14241427, https://doi.org/10.1126/science.aah4156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajendran, K., I. M. Moroz, P. L. Read, and S. M. Osprey, 2016: Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Quart. J. Roy. Meteor. Soc., 142, 11111120, https://doi.org/10.1002/qj.2714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajendran, K., I. M. Moroz, S. M. Osprey, and P. L. Read, 2018: Descent rate models of the synchronization of the quasi-biennial oscillation by the annual cycle in tropical upwelling. J. Atmos. Sci., 75, 22812297, https://doi.org/10.1175/JAS-D-17-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., and C. I. Garfinkel, 2021: CMIP5/6 models do not project changes in the statistical characteristics of sudden stratospheric warmings in the 21st century. Environ. Res. Lett., 16, 034024, https://doi.org/10.1088/1748-9326/abd4fe.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., R.-C. Ren, and Y. Yang, 2015: Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv. Atmos. Sci., 32, 952966, https://doi.org/10.1007/s00376-014-4192-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020a: Impact of quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models. J. Climate, 33, 47874813, https://doi.org/10.1175/JCLI-D-19-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020b: How does the quasi-biennial oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models? J. Climate, 33, 89758996, https://doi.org/10.1175/JCLI-D-20-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020c: Projected strengthening of the extratropical surface impacts of the quasi-biennial oscillation. Geophys. Res. Lett., 47, e2020GL089149, https://doi.org/10.1029/2020GL089149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., A. Solomon, and J. T. Bacmeister, 2014: On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5. J. Geophys. Res., 119, 30453062, https://doi.org/10.1002/2013JD021122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., J. A. Anstey, N. Butchart, Y. Kawatani, G. A. Meehl, S. Osprey, and I. R. Simpson, 2020: Progress in simulating the quasi-biennial oscillation in CMIP models. J. Geophys. Res., 125, e2019JD032362, https://doi.org/10.1029/2019JD032362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Jonas, N. K. Balachandran, G. A. Schmidt, and J. Lean, 2014: The QBO in two GISS global climate models: 1. Generation of the QBO. J. Geophys. Res., 119, 87988824, https://doi.org/10.1002/2014JD021678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2014: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 17521758, https://doi.org/10.1002/2013GL059160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenzinger, V., S. Osprey, L. Gray, and N. Butchart, 2017: Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model Dev., 10, 21572168, https://doi.org/10.5194/gmd-10-2157-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., W. Choi, D. Youn, D.-S. R. Park, and J. Y. Kim, 2013: Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys. Res. Lett., 40, 59495953, https://doi.org/10.1002/2013GL058266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900907, https://doi.org/10.1175/1520-0469(1968)025<0900:OEOKWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., K. Hamilton, S. Osprey, Y. Kawatani, and E. Nishimoto, 2018: First successful hindcasts of the 2016 disruption of the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 45, 16021610, https://doi.org/10.1002/2017GL076406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, P. A. G., and L. J. Gray, 2014: How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci., 71, 391409, https://doi.org/10.1175/JAS-D-13-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I. P., H. Lu, N. J. Mitchell, and T. Phillips, 2015: Dynamical response to the QBO in the northern winter stratosphere: Signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci., 72, 44874507, https://doi.org/10.1175/JAS-D-14-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I. P., C. I. Garfinkel, E. P. Gerber, M. Jucker, P. Hitchcock, and J. Rao, 2020: The generic nature of the tropospheric response to sudden stratospheric warmings. J. Climate, 33, 55895610, https://doi.org/10.1175/JCLI-D-19-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 197 197 17
Full Text Views 75 75 14
PDF Downloads 100 100 23

Development of the Extratropical Response to the Stratospheric Quasi-Biennial Oscillation

View More View Less
  • 1 a Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 b Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem, Israel
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Using the Model of an Idealized Moist Atmosphere (MiMA) capable of spontaneously generating a quasi-biennial oscillation (QBO), the gradual establishment of the extratropical response to the QBO is explored. The period and magnitude of the QBO and the magnitude of the polar Holton–Tan (HT) relationship is simulated in a free-running configuration of MiMA, comparable to that in state-of-the-art climate models. To isolate mechanisms whereby the QBO influences variability outside the tropical atmosphere, a series of branch experiments are performed with nudged QBO winds. When easterly QBO winds maximized around 30 hPa are relaxed, an Eliassen–Palm (E-P) flux divergence dipole quickly forms in the extratropical middle stratosphere as a direct response to the tropical meridional circulation, in contrast to the HT mechanism, which is associated with wave propagation near the zero wind line. This meridional circulation response to the relaxed QBO winds develops within the first 10 days in seasonally varying and fixed-seasonal experiments. No detectable changes in upward propagation of waves in the midlatitude lowermost stratosphere are evident for at least 20 days after branching, with the first changes only evident after 20 days in perpetual midwinter and season-varying runs, but after 40 days in perpetual November runs. The polar vortex begins to respond around the 20th day, and subsequently a near-surface response in the Atlantic Ocean sector forms in mid-to-late winter runs. These results suggest that the maximum near-surface response observed in mid-to-late winter is not simply due to a random seasonal synchronization of the QBO phase, but is also due to the long lag of the surface response to a QBO relaxation in early winter and the short lag of the surface response to a QBO relaxation in mid-to-late winter.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Rao, raojian@nuist.edu.cn

Abstract

Using the Model of an Idealized Moist Atmosphere (MiMA) capable of spontaneously generating a quasi-biennial oscillation (QBO), the gradual establishment of the extratropical response to the QBO is explored. The period and magnitude of the QBO and the magnitude of the polar Holton–Tan (HT) relationship is simulated in a free-running configuration of MiMA, comparable to that in state-of-the-art climate models. To isolate mechanisms whereby the QBO influences variability outside the tropical atmosphere, a series of branch experiments are performed with nudged QBO winds. When easterly QBO winds maximized around 30 hPa are relaxed, an Eliassen–Palm (E-P) flux divergence dipole quickly forms in the extratropical middle stratosphere as a direct response to the tropical meridional circulation, in contrast to the HT mechanism, which is associated with wave propagation near the zero wind line. This meridional circulation response to the relaxed QBO winds develops within the first 10 days in seasonally varying and fixed-seasonal experiments. No detectable changes in upward propagation of waves in the midlatitude lowermost stratosphere are evident for at least 20 days after branching, with the first changes only evident after 20 days in perpetual midwinter and season-varying runs, but after 40 days in perpetual November runs. The polar vortex begins to respond around the 20th day, and subsequently a near-surface response in the Atlantic Ocean sector forms in mid-to-late winter runs. These results suggest that the maximum near-surface response observed in mid-to-late winter is not simply due to a random seasonal synchronization of the QBO phase, but is also due to the long lag of the surface response to a QBO relaxation in early winter and the short lag of the surface response to a QBO relaxation in mid-to-late winter.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Rao, raojian@nuist.edu.cn
Save