The Influence of Fire Aerosols on Surface Climate and Gross Primary Production in the Energy Exascale Earth System Model (E3SM)

Li Xu aDepartment of Earth System Science, University of California, Irvine, California

Search for other papers by Li Xu in
Current site
Google Scholar
PubMed
Close
,
Qing Zhu bEarth and Environment Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Qing Zhu in
Current site
Google Scholar
PubMed
Close
,
William J. Riley bEarth and Environment Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by William J. Riley in
Current site
Google Scholar
PubMed
Close
,
Yang Chen aDepartment of Earth System Science, University of California, Irvine, California

Search for other papers by Yang Chen in
Current site
Google Scholar
PubMed
Close
,
Hailong Wang cPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Hailong Wang in
Current site
Google Scholar
PubMed
Close
,
Po-Lun Ma cPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Po-Lun Ma in
Current site
Google Scholar
PubMed
Close
, and
James T. Randerson aDepartment of Earth System Science, University of California, Irvine, California

Search for other papers by James T. Randerson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Fire-emitted aerosols play an important role in influencing Earth’s climate, directly by scattering and absorbing radiation and indirectly by influencing cloud microphysics. The quantification of fire–aerosol interactions, however, remains challenging and subject to uncertainties in emissions, plume parameterizations, and aerosol properties. Here we optimized fire-associated aerosol emissions in the Energy Exascale Earth System Model (E3SM) using the Global Fire Emissions Database (GFED) and AERONET aerosol optical depth (AOD) observations during 1997–2016. We distributed fire emissions vertically using smoke plume heights from Multiangle Imaging SpectroRadiometer (MISR) satellite observations. From the optimization, we estimate that global fires emit 45.5 Tg yr−1 of primary particulate organic matter and 3.9 Tg yr−1 of black carbon. We then performed two climate simulations with and without the optimized fire emissions. We find that fire aerosols significantly increase global AOD by 14% ± 7% and contribute to a reduction in net shortwave radiation at the surface (−2.3 ± 0.5 W m−2). Together, fire-induced direct and indirect aerosol effects cause annual mean global land surface air temperature to decrease by 0.17° ± 0.15°C, relative humidity to increase by 0.4% ± 0.3%, and diffuse light fraction to increase by 0.5% ± 0.3%. In response, GPP declines by 2.8 Pg C yr−1 as a result of large positive drivers (decreases in temperature and increases in humidity and diffuse light), nearly cancelling out large negative drivers (decreases in shortwave radiation and soil moisture). Our analysis highlights the importance of fire aerosols in modifying surface climate and photosynthesis across the tropics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Li Xu, lxu16@uci.edu

Abstract

Fire-emitted aerosols play an important role in influencing Earth’s climate, directly by scattering and absorbing radiation and indirectly by influencing cloud microphysics. The quantification of fire–aerosol interactions, however, remains challenging and subject to uncertainties in emissions, plume parameterizations, and aerosol properties. Here we optimized fire-associated aerosol emissions in the Energy Exascale Earth System Model (E3SM) using the Global Fire Emissions Database (GFED) and AERONET aerosol optical depth (AOD) observations during 1997–2016. We distributed fire emissions vertically using smoke plume heights from Multiangle Imaging SpectroRadiometer (MISR) satellite observations. From the optimization, we estimate that global fires emit 45.5 Tg yr−1 of primary particulate organic matter and 3.9 Tg yr−1 of black carbon. We then performed two climate simulations with and without the optimized fire emissions. We find that fire aerosols significantly increase global AOD by 14% ± 7% and contribute to a reduction in net shortwave radiation at the surface (−2.3 ± 0.5 W m−2). Together, fire-induced direct and indirect aerosol effects cause annual mean global land surface air temperature to decrease by 0.17° ± 0.15°C, relative humidity to increase by 0.4% ± 0.3%, and diffuse light fraction to increase by 0.5% ± 0.3%. In response, GPP declines by 2.8 Pg C yr−1 as a result of large positive drivers (decreases in temperature and increases in humidity and diffuse light), nearly cancelling out large negative drivers (decreases in shortwave radiation and soil moisture). Our analysis highlights the importance of fire aerosols in modifying surface climate and photosynthesis across the tropics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Li Xu, lxu16@uci.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.96 MB)
Save
  • Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA, 113, 11 77011 775, https://doi.org/10.1073/pnas.1607171113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, https://doi.org/10.1126/science.288.5468.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, E. A., C. R. Yendrek, S. Sitch, W. J. Collins, and L. D. Emberson, 2012: The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol., 63, 637661, https://doi.org/10.1146/annurev-arplant-042110-103829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akagi, S. K., and Coauthors, 2011: Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 40394072, https://doi.org/10.5194/acp-11-4039-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andela, N., and Coauthors, 2017: A human-driven decline in global burned area. Science, 356, 13561361, https://doi.org/10.1126/science.aal4108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D. C., and Coauthors, 2016: A pervasive role for biomass burning in tropical high ozone/low water structures. Nat. Commun., 7, 10 267, https://doi.org/10.1038/ncomms10267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., 2019: Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys., 19, 85238546, https://doi.org/10.5194/acp-19-8523-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 1341, https://doi.org/10.1016/j.earscirev.2008.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arneth, A., and Coauthors, 2010: Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525532, https://doi.org/10.1038/ngeo905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and J. R. Melton, 2018: Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat. Commun., 9, 1326, https://doi.org/10.1038/s41467-018-03838-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2020: Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17, 41734222, https://doi.org/10.5194/bg-17-4173-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badgley, G., L. D. L. Anderegg, J. A. Berry, and C. B. Field, 2019: Terrestrial gross primary production: Using NIRv to scale from site to globe. Global Change Biol., 25, 37313740, https://doi.org/10.1111/gcb.14729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baro, R., and Coauthors, 2017: Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models. Atmos. Chem. Phys., 17, 96779696, https://doi.org/10.5194/acp-17-9677-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, W. J., F. I. Woodward, and G. F. Midgley, 2005: The global distribution of ecosystems in a world without fire. New Phytol., 165, 525537, https://doi.org/10.1111/j.1469-8137.2004.01252.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, D. M., and Coauthors, 2009: Fire in the Earth system. Science, 324, 481484, https://doi.org/10.1126/science.1163886.

  • Brando, P. M., and Coauthors, 2020: The gathering firestorm in southern Amazonia. Sci. Adv., 6, eaay1632, https://doi.org/10.1126/sciadv.aay1632.

  • Brown, H., and Coauthors, 2021: Biomass burning aerosols in most climate models are too absorbing. Nat. Commun., 12, 277, https://doi.org/10.1038/s41467-020-20482-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., O. Ogunro, A. A. Frossard, L. M. Russell, P. J. Rasch, and S. M. Elliott, 2014: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria. Atmos. Chem. Phys., 14, 13 60113 629, https://doi.org/10.5194/acp-14-13601-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., and Coauthors, 2020: The DOE E3SM v1.1 biogeochemistry configuration: Description and simulated ecosystem-climate responses to historical changes in forcing. J. Adv. Model Earth Syst., 12, e2019MS001766, https://doi.org/10.1029/2019MS001766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, S. D., J. Beringer, J. T. Randerson, and F. S. Chapin, 2005: Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems. J. Geophys. Res., 110, D09106, https://doi.org/10.1029/2004JD005299.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and Q. L. Zhuang, 2014: Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010. Tellus, 66B, 21808, https://doi.org/10.3402/tellusb.v66.21808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., J. T. Randerson, G. R. van der Werf, D. C. Morton, M. Q. Mu, and P. S. Kasibhatla, 2010: Nitrogen deposition in tropical forests from savanna and deforestation fires. Global Change Biol., 16, 20242038, https://doi.org/10.1111/j.1365-2486.2009.02156.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., D. C. Morton, N. Andela, G. R. van der Werf, L. Giglio, and J. T. Randerson, 2017: A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Climate Change, 7, 906911, https://doi.org/10.1038/s41558-017-0014-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuvieco, E., and Coauthors, 2019: Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ., 225, 4564, https://doi.org/10.1016/j.rse.2019.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., D. S. Ward, and N. M. Mahowald, 2015: The sensitivity of global climate to the episodicity of fire aerosol emissions. J. Geophys. Res. Atmos., 120, 11 58911 607, https://doi.org/10.1002/2015JD024068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration—A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, https://doi.org/10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, https://doi.org/10.1177/1094342011428142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dentener, F., and Coauthors, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 6, 43214344, https://doi.org/10.5194/acp-6-4321-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doughty, C. E., M. G. Flanner, and M. L. Goulden, 2010: Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest. Global Biogeochem. Cycles, 24, GB3015, https://doi.org/10.1029/2009GB003670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2013: A seasonal trend of single scattering albedo in southern African biomass-burning particles: Implications for satellite products and estimates of emissions for the world’s largest biomass-burning source. J. Geophys. Res. Atmos., 118, 64146432, https://doi.org/10.1002/jgrd.50500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev., 3, 4367, https://doi.org/10.5194/gmd-3-43-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., and M. L. Roderick, 2003: Atmospheric science: Pinatubo, diffuse light, and the carbon cycle. Science, 299, 19971998, https://doi.org/10.1126/science.1080681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., H. L. Jiang, and J. Y. Harrington, 2005: On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 32, L02804, https://doi.org/10.1029/2004GL021369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and S. E. Schwartz, 2007: Aerosol properties and processes—A path from field and laboratory measurements to global climate models. Bull. Amer. Meteor. Soc., 88, 10591084, https://doi.org/10.1175/BAMS-88-7-1059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, L., L. Boschetti, D. P. Roy, M. L. Humber, and C. O. Justice, 2018: The collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ., 217, 7285, https://doi.org/10.1016/j.rse.2018.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, D. M., and Coauthors, 2019: Advancements in the Aerosol Robotic Network (AERONET) version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169209, https://doi.org/10.5194/amt-12-169-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J. C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandey, B. S., H. H. Lee, and C. Wang, 2016: Radiative effects of interannually varying vs. Interannually invariant aerosol emissions from fires. Atmos. Chem. Phys., 16, 14 49514 513, https://doi.org/10.5194/acp-16-14495-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L. H., D. Baldocchi, S. B. Verma, T. A. Black, T. Vesala, E. M. Falge, and P. R. Dowty, 2002: Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res., 107, 4050, https://doi.org/10.1029/2001JD001242.

    • Search Google Scholar
    • Export Citation
  • Gu, L. H., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, 2003: Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 20352038, https://doi.org/10.1126/science.1078366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J., P. Francis, O. Dubovik, M. Glew, and B. Holben, 2003: Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and sun photometers during SAFARI 2000. J. Geophys. Res., 108, 8471, https://doi.org/10.1029/2002JD002250.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., D. A. Ridley, J. H. Kroll, S. R. H. Barrett, K. E. Cady-Pereira, M. J. Alvarado, and C. D. Holmes, 2014: Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmos. Chem. Phys., 14, 55135527, https://doi.org/10.5194/acp-14-5513-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodnebrog, O., G. Myhre, P. M. Forster, J. Sillmann, and B. H. Samset, 2016: Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun., 7, 11236, https://doi.org/10.1038/ncomms11236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodzic, A., and J. P. Duvel, 2018: Impact of biomass burning aerosols on the diurnal cycle of convective clouds and precipitation over a tropical island. J. Geophys. Res. Atmos., 123, 10171036, https://doi.org/10.1002/2017JD027521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, A., and J. E. Penner, 2005: Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Global Biogeochem. Cycles, 19, GB2028, https://doi.org/10.1029/2004GB002374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayarathne, T., and Coauthors, 2018: Chemical characterization of fine particulate matter emitted by peat fires in central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys., 18, 25852600, https://doi.org/10.5194/acp-18-2585-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Y. Q., Z. Lu, X. H. Liu, Y. Qian, K. Zhang, Y. H. Wang, and X. Q. Yang, 2016: Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmos. Chem. Phys., 16, 14 80514 824, https://doi.org/10.5194/acp-16-14805-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Y. Q., and Coauthors, 2020: Impacts of wildfire aerosols on global energy budget and climate: The role of climate feedbacks. J. Climate, 33, 33493364, https://doi.org/10.1175/JCLI-D-19-0572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, F. H., and Coauthors, 2012: Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect., 120, 695701, https://doi.org/10.1289/ehp.1104422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joiner, J., and Coauthors, 2018: Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens., 10, 1346, https://doi.org/10.3390/rs10091346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., J. M. Haywood, and O. Boucher, 2007: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res., 112, D20211, https://doi.org/10.1029/2007JD008688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keppel-Aleks, G., and R. A. Washenfelder, 2016: The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995–2013. Geophys. Res. Lett., 43, 99849993, https://doi.org/10.1002/2016GL070052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landry, J.-S., A. I. Partanen, and H. D. Matthews, 2017: Carbon cycle and climate effects of forcing from fire-emitted aerosols. Environ. Res. Lett., 12, 025002, https://doi.org/10.1088/1748-9326/aa51de.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., 2020: Quantifying the impacts of fire aerosols on global terrestrial ecosystem productivity with the fully-coupled Earth system model CESM. Atmos. Oceanic Sci. Lett., 13, 330337, https://doi.org/10.1080/16742834.2020.1740580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., B. Bond-Lamberty, and S. Levis, 2014: Quantifying the role of fire in the Earth system—Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences, 11, 13451360, https://doi.org/10.5194/bg-11-1345-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardozzi, D., J. P. Sparks, and G. Bonan, 2013: Integrating O3 influences on terrestrial processes: Photosynthetic and stomatal response data available for regional and global modeling. Biogeosciences, 10, 68156831, https://doi.org/10.5194/bg-10-6815-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lou, S. J., and Coauthors, 2020: New SOA treatments within the Energy Exascale Earth System Model (E3SM): Strong production and sinks govern atmospheric SOA distributions and radiative forcing. J. Adv. Model Earth Syst., 12, e2020MS002266, https://doi.org/10.1029/2020MS002266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., 2011: Aerosol indirect effect on biogeochemical cycles and climate. Science, 334, 794796, https://doi.org/10.1126/science.1207374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., and Coauthors, 2008: Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem. Cycles, 22, GB4026, https://doi.org/10.1029/2008GB003240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 10141017, https://doi.org/10.1038/nature07949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myriokefalitakis, S., A. Nenes, A. R. Baker, N. Mihalopoulos, and M. Kanakidou, 2016: Bioavailable atmospheric phosphorous supply to the global ocean: A 3-D global modeling study. Biogeosciences, 13, 65196543, https://doi.org/10.5194/bg-13-6519-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, P. H. F., and Coauthors, 2007: The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus, 59B, 338349, https://doi.org/10.1111/j.1600-0889.2007.00270.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, X. H., and Coauthors, 2020: Six global biomass burning emission datasets: Intercomparison and application in one global aerosol model. Atmos. Chem. Phys., 20, 969994, https://doi.org/10.5194/acp-20-969-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellegrini, A. F. A., and Coauthors, 2018: Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553, 194198, https://doi.org/10.1038/nature24668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J. E., R. E. Dickinson, and C. A. O’Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. Science, 256, 14321434, https://doi.org/10.1126/science.256.5062.1432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J. E., C. C. Chuang, and K. Grant, 1998: Climate forcing by carbonaceous and sulfate aerosols. Climate Dyn., 14, 839851, https://doi.org/10.1007/s003820050259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. L., and Coauthors, 2010: Drought–mortality relationships for tropical forests. New Phytol., 187, 631646, https://doi.org/10.1111/j.1469-8137.2010.03359.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., Y. Chen, G. R. van der Werf, B. M. Rogers, and D. C. Morton, 2012: Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci., 117, G04012, https://doi.org/10.1029/2012JG002128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rap, A., and Coauthors, 2015: Fires increase Amazon forest productivity through increases in diffuse radiation. Geophys. Res. Lett., 42, 46544662, https://doi.org/10.1002/2015GL063719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Coauthors, 2019: An overview of the atmospheric component of the Energy Exascale Earth System Model. J. Adv. Model. Earth Syst., 11, 23772411, https://doi.org/10.1029/2019MS001629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roteta, E., A. Bastarrika, M. Padilla, T. Storm, and E. Chuvieco, 2019: Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ., 222, 117, https://doi.org/10.1016/j.rse.2018.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., R. Wood, and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res., 116, D12205, https://doi.org/10.1029/2010JD015540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M. J. Jeong, 2014: MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos., 119, 13 96513 989, https://doi.org/10.1002/2014JD022453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrivastava, M., and Coauthors, 2015: Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions. J. Geophys. Res. Atmos., 120, 41694195, https://doi.org/10.1002/2014JD022563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., and L. Garcia-Carreras, 2015: The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett., 42, 95469552, https://doi.org/10.1002/2015GL066063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockwell, C. E., and Coauthors, 2016: Field measurements of trace gases and aerosols emitted by peat fires in central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys., 16, 11 71111 732, https://doi.org/10.5194/acp-16-11711-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, https://doi.org/10.1016/j.jcp.2010.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tesfaye, M., J. Botai, V. Sivakumar, and G. M. Tsidu, 2014: Simulation of biomass burning aerosols mass distributions and their direct and semi-direct effects over South Africa using a regional climate model. Meteor. Atmos. Phys., 125, 177195, https://doi.org/10.1007/s00703-014-0328-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornhill, G. D., C. L. Ryder, E. J. Highwood, L. C. Shaffrey, and B. T. Johnson, 2018: The effect of South American biomass burning aerosol emissions on the regional climate. Atmos. Chem. Phys., 18, 53215342, https://doi.org/10.5194/acp-18-5321-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tosca, M. G., J. T. Randerson, C. S. Zender, D. L. Nelson, D. J. Diner, and J. A. Logan, 2011: Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. J. Geophys. Res., 116, D08207, https://doi.org/10.1029/2010JD015148.

    • Search Google Scholar
    • Export Citation
  • Tosca, M. G., J. T. Randerson, and C. S. Zender, 2013: Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmos. Chem. Phys., 13, 52275241, https://doi.org/10.5194/acp-13-5227-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, https://doi.org/10.1016/0004-6981(74)90004-3.

  • Val Martin, M., R. A. Kahn, and M. G. Tosca, 2018: A global analysis of wildfire smoke injection heights derived from space-based multi-angle imaging. Remote Sens., 10, 1609, https://doi.org/10.3390/rs10101609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., and Coauthors, 2017: Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data, 9, 697720, https://doi.org/10.5194/essd-9-697-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veira, A., S. Kloster, N. A. J. Schutgens, and J. W. Kaiser, 2015: Fire emission heights in the climate system—Part 2: Impact on transport, black carbon concentrations and radiation. Atmos. Chem. Phys., 15, 71737193, https://doi.org/10.5194/acp-15-7173-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2013: Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model. Geosci. Model Dev., 6, 765782, https://doi.org/10.5194/gmd-6-765-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2020: Aerosols in the E3SM version 1: New developments and their impacts on radiative forcing. J. Adv. Model Earth Syst., 12, e2019MS001851, https://doi.org/10.1029/2019MS001851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, D. S., S. Kloster, N. M. Mahowald, B. M. Rogers, J. T. Randerson, and P. G. Hess, 2012: The changing radiative forcing of fires: Global model estimates for past, present and future. Atmos. Chem. Phys., 12, 10 85710 886, https://doi.org/10.5194/acp-12-10857-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitman, E., M. A. Parisien, D. K. Thompson, and M. D. Flannigan, 2019: Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep., 9, 18 796, https://doi.org/10.1038/s41598-019-55036-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiggins, E. B., and Coauthors, 2018: Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl. Acad. Sci. USA, 115, 12 41912 424, https://doi.org/10.1073/pnas.1806003115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., J. T. Abatzoglou, A. Gershunov, J. Guzman-Morales, D. A. Bishop, J. K. Balch, and D. P. Lettenmaier, 2019: Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future, 7, 892910, https://doi.org/10.1029/2019EF001210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wooster, M. J., and Coauthors, 2018: New tropical peatland gas and particulate emissions factors indicate 2015 Indonesian fires released far more particulate matter (but less methane) than current inventories imply. Remote Sens., 10, 495, https://doi.org/10.3390/rs10040495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H. B., S. C. Liu, and R. E. Dickinson, 2002: Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J. Geophys. Res., 107, 4142, https://doi.org/10.1029/2001JD000754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., and N. Unger, 2018: Fire air pollution reduces global terrestrial productivity. Nat. Commun., 9, 5413, https://doi.org/10.1038/s41467-018-07921-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., and Coauthors, 2017: Ozone and haze pollution weakens net primary productivity in China. Atmos. Chem. Phys., 17, 60736089, https://doi.org/10.5194/acp-17-6073-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2009: Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia. Geophys. Res. Lett., 36, L10814, https://doi.org/10.1029/2009GL037180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L. Y., M. V. Martin, L. V. Gatti, R. Kahn, A. Hecobian, and E. V. Fischer, 2018: Development and implementation of a new biomass burning emissions injection height scheme (BBEIH v1.0) for the GEOS-Chem model (v9-01-01). Geosci. Model Dev., 11, 41034116, https://doi.org/10.5194/gmd-11-4103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Q., and W. J. Riley, 2015: Improved modelling of soil nitrogen losses. Nat. Climate Change, 5, 705706, https://doi.org/10.1038/nclimate2696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Q., W. J. Riley, J. Y. Tang, N. Collier, F. M. Hoffman, X. J. Yang, and G. Bisht, 2019: Representing nitrogen, phosphorus, and carbon interactions in the E3SM land model: Development and global benchmarking. J. Adv. Model. Earth Syst., 11, 22382258, https://doi.org/10.1029/2018MS001571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y. F., Y. H. Wang, Y. Qian, H. Q. Tian, J. Yang, and E. Alvarado, 2020: Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability. Atmos. Chem. Phys., 20, 9951020, https://doi.org/10.5194/acp-20-995-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 887 0 0
Full Text Views 3799 2019 596
PDF Downloads 1560 224 22