• Antokhina, O., P. N. Antokhin, E. V. Devyatova, and M. Yulia, 2017: Wintertime atmospheric blocking events over western Siberia in the period 2004–2016 and their influence on the surface temperature anomalies. Proceedings, 1, 198, https://doi.org/10.3390/ecas2017-04127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47284733, https://doi.org/10.1002/grl.50880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., J. Slingo, and T. Woollings, 2012: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Climate Dyn., 38, 24672481, https://doi.org/10.1007/s00382-011-1243-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, https://doi.org/10.1002/2013GL058745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, A. R. Lupo, and E. Hernández, 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 10421063, https://doi.org/10.1175/JCLI3678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I: A novel detection scheme. Climate Dyn., 35, 13731391, https://doi.org/10.1007/s00382-010-0767-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., B. J. Hoskins, and E. Tyrlis, 2007: Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci., 64, 28812898, https://doi.org/10.1175/JAS3984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, L., G. C. Hegerl, and A. K. Steiner, 2017: Connecting atmospheric blocking to European temperature extremes in spring. J. Climate, 30, 585593, https://doi.org/10.1175/JCLI-D-16-0518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CAL FIRE, 2019: 2017 Wildfire activity statistics. California Department of Forestry and Fire Protection, https://www.fire.ca.gov/media/10059/2017_redbook_final.pdf.

  • Cattiaux, J., H. Douville, and Y. Peings, 2012: European temperatures in CMIP5: Origins of present-day biases and future uncertainties. Climate Dyn., 41, 28892907, https://doi.org/10.1007/s00382-013-1731-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, H. N., W. Zhou, Y. Shao, and W. Chen, 2013: Observational climatology and characteristics of wintertime atmospheric blocking over Ural–Siberia. Climate Dyn., 41, 6379, https://doi.org/10.1007/s00382-012-1587-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed March 2021, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form.

  • Coumou, D., G. D. Capua, S. Vavrus, L. Wand, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nature, 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2020: From CMIP3 to CMIP6: Northern Hemisphere atmospheric blocking simulation in present and future climate. J. Climate, 33, 10 02110 038, https://doi.org/10.1175/JCLI-D-19-0862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, https://doi.org/10.1175/JCLI-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, H., T. Woollings, J. Anstey, R. J. Haarsma, and W. Hazeleger, 2013: Atmospheric blocking and its relation to jet changes in a future climate. Climate Dyn., 41, 26432654, https://doi.org/10.1007/s00382-013-1699-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 15671586, https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Vogelsang, and S. J. Colucci, 2008: Interdecadal trend and ENSO-related interannual variability in Southern Hemisphere blocking. J. Climate, 21, 30683077, https://doi.org/10.1175/2007JCLI1593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drouard, M., and T. Woollings, 2018: Contrasting mechanisms of summer blocking over western Eurasia. Geophys. Res. Lett., 45, 12 04012 048, https://doi.org/10.1029/2018GL079894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., S.-W. Son, and H. Lin, 2013: Evaluation of Northern Hemisphere blocking climatology in the global environment multiscale model. Mon. Wea. Rev., 141, 707727, https://doi.org/10.1175/MWR-D-12-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., 1985: Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci., 42, 18591867, https://doi.org/10.1175/1520-0469(1985)042<1859:SWATAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., R. Paredes, R. M. Trigo, I. F. Trigo, H. Hernández, D. Barriopedro, and M. T. Mendes, 2007: The outstanding 2004/05 drought in the Iberian peninsula: Associated atmospheric circulation. J. Hydrometeor., 8, 483498, https://doi.org/10.1175/JHM578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, https://doi.org/10.1080/10643380802238137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. P. Boisier, R. Rondanelli, A. Montecinos, H. H. Sepúlveda, and D. Veloso-Aguila, 2019: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol., 40, 421439, https://doi.org/10.1002/joc.6219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and Coauthors, 2019: Recent tropical expansion: Natural variability or forced response? J. Climate, 32, 1551–1571, https://doi.org/10.1175/JCLI-D-18-0444.1.

    • Crossref
    • Export Citation
  • Hanna, E., T. E. Cropper, R. J. Hall, and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: A regional climate change signal. Int. J. Climatol., 36, 48474861, https://doi.org/10.1002/joc.4673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., and Z. Kuang, 2015: Blocking variability: Arctic amplification versus Arctic Oscillation. Geophys. Res. Lett., 42, 85868595, https://doi.org/10.1002/2015GL065923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. H., L. F. Li, M. F. Ting, and Y. M. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, https://doi.org/10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, J. M. Arblaste, F. Delage, H. Nguyen, S.-K. Min, and M. C. Wheeler, 2016: The impact of the southern annular mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett., 43, 71607167, https://doi.org/10.1002/2016GL069453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2018: Climatology of tracked persistent maxima of 500-hPa geopotential height. Climate Dyn., 51, 701717, https://doi.org/10.1007/s00382-017-3950-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludwig, P., J. G. Pinto, C. C. Raible, and Y. Shao, 2017: Impacts of surface boundary conditions on regional climate model simulations of European climate during the last glacial maximum. Geophys. Res. Lett., 44, 50865095, https://doi.org/10.1002/2017GL073622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., D. Hudson, M. C. Wheeler, O. Alves, H. H. Hendon, M. J. Pook, J. S. Risbey, 2014: Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Climate Dyn., 43, 1915–1937, https://doi.org/10.1007/s00382-013-2016-1.

    • Crossref
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. J. Woollings, 2012: Wave-breaking characteristics of mid-latitude blocking. Quart. J. Roy. Meteor. Soc., 138, 12851296, https://doi.org/10.1002/qj.990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and D. Ovens, 2019: The Northern California wildfires of 8–9 October 2017: The role of a major downslope wind event. Bull. Amer. Meteor. Soc., 100, 235256, https://doi.org/10.1175/BAMS-D-18-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., R. Mizuta, and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, https://doi.org/10.1029/2009JD011919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., H. Endo, and R. Mizuta, 2010: Future change in Southern Hemisphere summertime and wintertime atmospheric blockings simulated using a 20-km-mesh AGCM. Geophys. Res. Lett., 37, L02803, https://doi.org/10.1029/2009GL041758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendes, M. C. D., R. M. Trigo, I. F. A. Cavalcanti, and C. C. DaCamara, 2008: Blocking episodes in the Southern Hemisphere: Impact on the climate of adjacent continental areas. Pure Appl. Geophys., 165, 19411962, https://doi.org/10.1007/s00024-008-0409-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and C. S. Y. Huang, 2018: Atmospheric blocking as a traffic jam in the jet stream. Science, 361, 4247, https://doi.org/10.1126/science.aat0721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nauslar, N. J., J. T. Abatzoglou, and P. T. Marsh, 2018: The 2017 North Bay and Southern California fires: A case study. Fire, 1, 18, https://doi.org/10.3390/fire1010018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndarana, T., and D. W. Waugh, 2011: A climatology of Rossby wave breaking on the Southern Hemisphere tropopause. J. Atmos. Sci., 68, 798811, https://doi.org/10.1175/2010JAS3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndarana, T., D. W. Waugh, L. M. Polvani, G. J. P. Correa, and E. P. Gerber, 2012: Antarctic ozone depletion and trends in tropopause Rossby wave breaking. Atmos. Sci. Lett., 13, 164–168, https://doi.org/10.1002/asl.384.

    • Crossref
    • Export Citation
  • Patterson, M., T. Woollings, T. Bracegirdle, and N. T. Lewis, 2020: Wintertime Southern Hemisphere jet streams shaped by interaction of transient eddies with Antarctic orography. J. Climate, 33, 10 505–10 522, https://doi.org/10.1175/JCLI-D-20-0153.1.

    • Crossref
    • Export Citation
  • Peings, Y., J. Cattiaux, S. J. Vavrus, and G. Magnusdottir, 2018: Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett., 13, 074016, https://doi.org/10.1088/1748-9326/aacc79.

    • Crossref
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 70, 743755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D., and D. W. Waugh, 2003: Rossby wave breaking in the Southern Hemisphere wintertime upper troposphere. Mon. Wea. Rev., 131, 26232634, https://doi.org/10.1175/1520-0493(2003)131<2623:RWBITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinheiro, M. C., P. A. Ullrich, and R. Grotjahn, 2019: Atmospheric blocking and intercomparison of objective detection methods: Flow field characteristics. Climate Dyn., 53, 41894216, https://doi.org/10.1007/s00382-019-04782-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2017: Climate variability and change of Mediterranean-type climates. Sci. Rep., 7, 10 783, https://doi.org/10.1038/s41598-017-11285-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., T. Ambrizzi, B. A. Silva, R. F. Pinheiro, and R. P. da Rocha, 2019: The South Atlantic subtropical anticyclone: Present and future climate. Front. Earth Sci., 26, 8, https://doi.org/10.3389/feart.2019.00008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, J. A., J. G. Pinto, and U. Ulbrich, 2009: On the development of strong ridge episodes over the eastern North Atlantic. Geophys. Res. Lett., 36, L17804, https://doi.org/10.1029/2009GL039086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003GL019341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., T. J. Osborn, Y. Kushnir, I. R. Simpson, J. Nakamura, and H. Liu, 2019: Climate variability and change of Mediterranean-type climates. J. Climate, 32, 28872915, https://doi.org/10.1175/JCLI-D-18-0472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., M. Croci-Maspoli, M. Kallache, and R. W. Katz, 2011: Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J. Climate, 24, 58995913, https://doi.org/10.1175/2011JCLI4075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, P. M., D. Barriopedro, R. M. Trigo, A. M. Ramos, R. Nieto, L. Gimeno, K. F. Turkman, and M. L. R. Liberato, 2016: Impact of Euro-Atlantic blocking patterns in Iberia precipitation using a novel high resolution dataset. Climate Dyn., 46, 25732591, https://doi.org/10.1007/s00382-015-2718-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, P. M., R. M. Trigo, D. Barriopedro, P. M. M. Soares, A. M. Ramos, and M. L. R. Liberato, 2017: Responses of European precipitation distributions and regimes to different blocking locations. Climate Dyn., 48, 11411160, https://doi.org/10.1007/s00382-016-3132-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, P. M., R. M. Trigo, D. Barriopedro, P. M. M. Soares, and J. A. Santos, 2018a: European temperature responses to blocking and ridge regional patterns. Climate Dyn., 50, 457477, https://doi.org/10.1007/s00382-017-3620-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, P. M., R. C. Blamey, C. J. C. Reason, A. M. Ramos, and R. M. Trigo, 2018b: The ‘Day Zero’ Cape Town drought and the poleward migration of moisture corridors. Environ. Res. Lett., 13, L124025, https://doi.org/10.1088/1748-9326/aaebc7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, P. M., D. Barriopedro, A. M. Ramos, R. García-Herrera, F. Espírito-Santo, and R. M. Trigo, 2019: Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Wea. Climate Extremes, 26, 100224, https://doi.org/10.1016/j.wace.2019.100224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Reexamining tropical expansion. Nat. Climate Change, 8, 768775, https://doi.org/10.1038/s41558-018-0246-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and feedbacks. Nat. Climate Change, 8, 10761081, https://doi.org/10.1038/s41558-018-0339-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv., 2, e1501344, https://doi.org/10.1126/sciadv.1501344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., J. C. Fyfe, N. Gillett, and G. J. Marshall, 2015: Comparing trends in the southern annular mode and surface westerly jet. J. Climate, 28, 88408859, https://doi.org/10.1175/JCLI-D-15-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 44234440, https://doi.org/10.1175/JAS3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timbal, B., and W. Drosdowsky, 2013: The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 10211034, https://doi.org/10.1002/joc.3492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., I. F. Trigo, C. C. DaCamara, and T. J. Osborn, 2004: Winter blocking episodes in the European-Atlantic sector: Climate impacts and associated physical mechanisms in the reanalysis. Climate Dyn., 23, 1728, https://doi.org/10.1007/s00382-004-0410-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., J. Bader, E. Manzini, and D. Matei, 2021: Reconciling different methods of high-latitude blocking detection. Quart. J. Roy. Meteor. Soc., 147, 10701096, https://doi.org/10.1002/qj.3960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, J. C. L. Chan, D. Barriopedro, and R. Huang, 2010: Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int. J. Climatol., 30, 153158.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. G. Pinto, and J. A. Santos, 2011: Dynamical evolution of North Atlantic ridges and poleward jet stream displacements. J. Atmos. Sci., 68, 954963, https://doi.org/10.1175/2011JAS3661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., D. Barriopedro, J. Methven, S. W. Son, O. Martius, J. Sillmann, A. R. Lupo, and S. Seneviratne, 2018: Blocking and its response to climate change. Curr. Climate Change Rep., 4, 287300, https://doi.org/10.1007/s40641-018-0108-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 530 530 50
Full Text Views 129 129 23
PDF Downloads 169 169 27

A New Combined Detection Algorithm for Blocking and Subtropical Ridges

View More View Less
  • 1 a Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Portugal
  • | 2 b Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
  • | 3 c Instituto de Geociencias, IGEO (CSIC-UCM), Madrid, Spain
  • | 4 d Departamento de Física de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid (UCM), Madrid, Spain
  • | 5 e Department of Physics, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
  • | 6 f Departamento de Meteorologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Blocks are high-impact atmospheric systems of the mid-/high latitudes and have been widely addressed in meteorological and climatological studies. However, the diversity of blocking definitions makes comparison across studies not straightforward. Here, we propose a conceptual model for the life cycle of high pressure systems that recognizes the multifaceted and transient characteristics of these events. A detection scheme identifies and classifies daily structures, discriminating between subtropical ridges and different types of well-established blocking patterns (omega and dipole-like Rex). This is complemented by a spatiotemporal tracking algorithm, which accounts for transitions between patterns, providing a global catalog of events for 1950–2020. Criteria rely on simple metrics retrieved from one single-level field, and allow implementation in different datasets and climatic realms. Using reanalysis data, we provide illustrative examples, the first global and seasonal climatological assessment of the diversity of high pressure events, their associated impacts, and recent frequency changes. Results reveal that ridge and blocking events affect widespread regions from the subtropics to high latitudes. We find remarkably distinct regional impacts among the considered types, which had been hindered in previous studies by restricted focus on Rex-like structures. This plethora of high pressure systems is much less evident in the Southern Hemisphere, where activity is dominated by subtropical ridges and secluded blocking-like patterns. We report increasing frequencies of low-latitude systems, although with hemispheric and seasonal differences that can only be partially interpreted as a consequence of subtropical expansion. Blocking frequency trends exhibit more heterogeneous and complex spatial patterns, with no evidence of generalized significant changes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pedro M. Sousa, ppsousa@fc.ul.pt

Abstract

Blocks are high-impact atmospheric systems of the mid-/high latitudes and have been widely addressed in meteorological and climatological studies. However, the diversity of blocking definitions makes comparison across studies not straightforward. Here, we propose a conceptual model for the life cycle of high pressure systems that recognizes the multifaceted and transient characteristics of these events. A detection scheme identifies and classifies daily structures, discriminating between subtropical ridges and different types of well-established blocking patterns (omega and dipole-like Rex). This is complemented by a spatiotemporal tracking algorithm, which accounts for transitions between patterns, providing a global catalog of events for 1950–2020. Criteria rely on simple metrics retrieved from one single-level field, and allow implementation in different datasets and climatic realms. Using reanalysis data, we provide illustrative examples, the first global and seasonal climatological assessment of the diversity of high pressure events, their associated impacts, and recent frequency changes. Results reveal that ridge and blocking events affect widespread regions from the subtropics to high latitudes. We find remarkably distinct regional impacts among the considered types, which had been hindered in previous studies by restricted focus on Rex-like structures. This plethora of high pressure systems is much less evident in the Southern Hemisphere, where activity is dominated by subtropical ridges and secluded blocking-like patterns. We report increasing frequencies of low-latitude systems, although with hemispheric and seasonal differences that can only be partially interpreted as a consequence of subtropical expansion. Blocking frequency trends exhibit more heterogeneous and complex spatial patterns, with no evidence of generalized significant changes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pedro M. Sousa, ppsousa@fc.ul.pt

Supplementary Materials

    • Supplemental Materials (PDF 4.76 MB)
Save