• Alexander, L. V., X. B. Zhang, T. C. Peterson, J. Caesar, and J. L. Vazquez-Aguirre, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and A. R. Aiyyer, 2008: Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 29452963, https://doi.org/10.1175/2007MWR2308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2013: Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 19391951, https://doi.org/10.1175/JAMC-D-12-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2011: Precipitation climate of central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol., 108, 345354, https://doi.org/10.1007/s00704-011-0537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bueh, C., S. Ning, and Z. Xie, 2011: Large-scale circulation anomalies associated with persistent low temperature over southern China in January 2008. Atmos. Sci. Lett., 12, 273280, https://doi.org/10.1002/asl.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buri, D., J. Lukovi, B. Bajat, M. Kilibarda, and V. Duci, 2015: Recent trends in daily rainfall extremes over Montenegro (1951–2010). Nat. Hazards Earth Syst., 3, 23472377.

    • Search Google Scholar
    • Export Citation
  • Carroll, E. B., 2006: Thermal advection, vorticity advection and potential vorticity advection in extra-tropical, synoptic-scale development. Meteor. Appl., 10, 281292, https://doi.org/10.1017/S1350482703003086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2008: Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev., 27, 351364, https://doi.org/10.1016/j.quascirev.2007.10.017.

    • Search Google Scholar
    • Export Citation
  • Chen, F., J. Wang, L. Jin, Q. Zhang, L. I. Jing, and J. Chen, 2009: Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China, 3, 4250, https://doi.org/10.1007/s11707-009-0013-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2019: Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev., 192, 337354, https://doi.org/10.1016/j.earscirev.2019.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2017: Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44, 24362444, https://doi.org/10.1002/2016GL072439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H. S., L. Liu, and Y. J. Zhu, 2012: Possible linkage between winter extreme low temperature events over China and synoptic-scale transient wave activity. Sci. China Earth Sci., 42, 19511965.

    • Search Google Scholar
    • Export Citation
  • Chen, H. S., Y. Zhu, and L. Liu, 2013: Relationship of synoptic-scale transient eddies and extreme winter precipitation events in the middle and lower reaches of the Yangtze River (in Chinese). Chin. J. Atmos. Sci., 37, 801814.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2013: Persistent extreme precipitation events in China during 1951–2010. Climate Res., 57, 143155, https://doi.org/10.3354/cr01171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2014: Precursor circulation features for persistent extreme precipitation in central-eastern China. Wea. Forecasting, 29, 226240, https://doi.org/10.1175/WAF-D-13-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., and J. Zhang, 2020: The characteristics of late summer extreme precipitation in northern China and associated large-scale circulations. Int. J. Climatol., 40, 51705187, https://doi.org/10.1002/joc.6512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, W., X. Dong, B. Xi, and A. Kennedy, 2017: Evaluation of reanalyzed precipitation variability and trends using the gridded gauge-based analysis over the CONUS. J. Hydrometeor., 18, 22272248, https://doi.org/10.1175/JHM-D-17-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, and S. Kobayashi, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, H., Y. Chen, X. Shi, W. Li, H. Wang, S. Zhang, and G. Fang, 2014: Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res., 138, 346355, https://doi.org/10.1016/j.atmosres.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, F., and C. Li, 2017: Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China. J. Geophys. Res., 122, 73857400, https://doi.org/10.1002/2017JD026530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, N. Herold, and A. J. Dittus, 2016a: Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J. Geophys. Res., 121, 11 17411 189, https://doi.org/10.1002/2016JD025480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016b: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, H., Z. Wu, S. Zong, X. Meng, and L. Wang, 2013: Assessing the characteristics of extreme precipitation over northeast China using the multifractal detrended fluctuation analysis. J. Geophys. Res., 118, 61656174, https://doi.org/10.1002/jgrd.50487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and I. Boyer-Souchet, 2012: Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys. Res. Lett., 39, L10803, https://doi.org/10.1029/2012GL052014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, K., Z. Xie, H. Wang, Z. Xu, and J. Liu, 2018: Frequency of spring dust weather in North China linked to sea ice variability in the Barents Sea. Climate Dyn., 51, 44394450, https://doi.org/10.1007/s00382-016-3515-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujinami, H., and T. Yasunari, 2009: The effects of midlatitude waves over and around the Tibetan Plateau on submonthly variability of the East Asian summer monsoon. Mon. Wea. Rev., 137, 22862304, https://doi.org/10.1175/2009MWR2826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fumière, Q., M. Déqué, O. Nuissier, S. Somot, A. Alias, C. Caillaud, and Y. Seity, 2019: Extreme rainfall in Mediterranean France during the fall: Added value of the CNRM-AROME convection-permitting regional climate model. Climate Dyn., 55, 7791, https://doi.org/10.1007/s00382-019-04898-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannakaki, P., and O. Martius, 2016: Synoptic-scale flow structures associated with extreme precipitation events in northern Switzerland. Int. J. Climatol., 36, 24972515, https://doi.org/10.1002/joc.4508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hu, Y., P. Zhai, L. Liu, Y. Chen, and Y. Liu, 2015: Dominant large-scale atmospheric circulation systems for the extreme precipitation over the western Sichuan Basin in summer 2013. Adv. Meteor., 2015, 690363, https://doi.org/10.1155/2015/690363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., C. Zhang, and Q. Hu, 2014: Temperature changes in central Asia from 1979 to 2011 based on multiple datasets. J. Climate, 27, 11431167, https://doi.org/10.1175/JCLI-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Hu, C. Zhang, X. Chen, and Q. Li, 2016a: Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia. J. Geophys. Res., 121, 56485663, https://doi.org/10.1002/2016JD024781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Li, X. Chen, Z. Teng, C. Chen, G. Yin, and Y. Zhang, 2016b: Climate changes in temperature and precipitation extremes in an alpine grassland of central Asia. Theor. Appl. Climatol., 126, 519531, https://doi.org/10.1007/s00704-015-1568-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, C. Qian, S. Wang, and J. Li, 2017: Variations and changes of annual precipitation in central Asia over the last century. Int. J. Climatol., 37, 157170, https://doi.org/10.1002/joc.4988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, A., Y. Zhou, Y. Zhang, D. Huang, Y. Zhao, and H. Wu, 2014: Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5. J. Climate, 27, 66276646, https://doi.org/10.1175/JCLI-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., F. H. Chen, S. Feng, J. H. Chen, and X. J. Zhang, 2013: Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull., 58, 39623968, https://doi.org/10.1007/s11434-013-5970-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., S. Feng, J. Chen, and F. Chen, 2015: Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China. J. Climate, 28, 35793591, https://doi.org/10.1175/JCLI-D-14-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., and Coauthors, 2018: A possible mechanism for the occurrence of wintertime extreme precipitation events over South China. Climate Dyn., 52, 23672384, https://doi.org/10.1007/s00382-018-4262-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. M. Holland, and P. R. Gent, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jiang, J., T. Zhou, X. Chen, and L. Zhang, 2020: Future changes in precipitation over central Asia based on CMIP6 projections. Environ. Res. Lett., 15, 054009, https://doi.org/10.1088/1748-9326/ab7d03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., W. Li, J. Xu, and L. Li, 2015: Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Climate, 28, 86038619, https://doi.org/10.1175/JCLI-D-15-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., T. C. Peterson, D. A. Quadir, S. Dorji, and X. Zou, 2006: Changes in daily temperature and precipitation extremes in central and South Asia. J. Geophys. Res., 111, D16105, https://doi.org/10.1029/2005JD006316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, A. K., and Coauthors, 2008: Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811821, https://doi.org/10.1641/B580908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S. Xie, and H. Nakamura, 2011: Dynamics of interannual variability in summer precipitation over East Asia. J. Climate, 24, 54355453, https://doi.org/10.1175/2011JCLI4099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., J. S. Breitgand, S. Gualdi, and S. B. Feldstein, 2014: Teleconnection–extreme precipitation relationships over the Mediterranean region. Theor. Appl. Climatol., 117, 679692, https://doi.org/10.1007/s00704-013-1036-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., B. P. Kirtman, and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean in an interactive ensemble coupled model. J. Climate, 19, 63716381, https://doi.org/10.1175/JCLI3980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. N., A. Molini, T. B. M. J. Ouarda, and M. N. Rajeevan, 2017: North Atlantic controls on wintertime warm extremes and aridification trends in the Middle East. Sci. Rep., 7, 12301, https://doi.org/10.1038/s41598-017-12430-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 2003: North American trends in extreme precipitation. Nat. Hazards, 29, 291305, https://doi.org/10.1023/A:1023694115864.

  • Li, H., H. Chen, H. Wang, J. Sun, and J. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., S. He, Y. Gao, H. Chen, and H. Wang, 2020: North Atlantic modulation of interdecadal variations in hot drought events over northeastern China. J. Climate, 33, 43154332, https://doi.org/10.1175/JCLI-D-19-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: A review. Adv. Atmos. Sci., 36, 902921, https://doi:10.1007/s00376-019-8236-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chen, W. Li, H. Deng, and G. Fang, 2015: Potential impacts of climate change on vegetation dynamics in central Asia. J. Geophys. Res., 120, 12 34512 356, https://doi.org/10.1002/2015JD023618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y. K., 2015: The East Atlantic/West Russia (EA/WR) teleconnection in the North Atlantic: Climate impact and relation to Rossby wave propagation. Climate Dyn., 44, 32113222, https://doi.org/10.1007/s00382-014-2381-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lioubimtseva, E., and C. M. Henebry, 2009: Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ., 73, 963977, https://doi.org/10.1016/j.jaridenv.2009.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., X. Liu, and B. Dong, 2017: Intraseasonal variability of winter precipitation over central Asia and the western Tibetan Plateau from 1979 to 2013 and its relationship with the North Atlantic Oscillation. Dyn. Atmos. Oceans, 79, 3142, https://doi.org/10.1016/j.dynatmoce.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. Zhai, L. Hu, and Y. Chen, 2015: Dominant large-scale atmospheric circulation systems for the extreme precipitation over the western Sichuan Basin in summer 2013. Adv. Meteor., 2015, 690363, https://doi.org/10.1155/2015/690363.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Department of Meteorology Statistical Forecast Project Tech. Rep. 1, 49 pp.

  • Lu, R., Z. Zhu, T. Li, and H. Zhang, 2020: Interannual and interdecadal variabilities of spring rainfall over Northeast China and their associated sea surface temperature anomaly forcings. J. Climate, 33, 14231435, https://doi.org/10.1175/JCLI-D-19-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Q., J. Zhang, A. T. Game, Y. Chang, and S. Li, 2020: Spatiotemporal variability of summer precipitation and precipitation extremes and associated large-scale mechanisms in Central Asia during 1979–2018. J. Hydrol. X, 8, 100061, https://doi.org/10.1016/j.hydroa.2020.100061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madsen, H., D. Lawrence, M. Lang, M. Martinkova, and T. Kjeldsen, 2014: Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol., 519, 36343650, https://doi.org/10.1016/j.jhydrol.2014.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malsy, M., T. A. D. Beek, and M. Floerke, 2015: Evaluation of large-scale precipitation data sets for water resources modelling in Central Asia. Environ. Earth Sci., 73, 787799, https://doi.org/10.1007/s12665-014-3107-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathis, M., P. Sorrel, S. Klotz, X. Huang, and H. Oberhänsli, 2014: Regional vegetation patterns at Lake Son Kul reveal Holocene climatic variability in central Tien Shan (Kyrgyzstan, Central Asia). Quat. Sci. Rev., 89, 169185, https://doi.org/10.1016/j.quascirev.2014.01.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, R., M. Wen, R. Zhang, and L. Li, 2019: The influence of wave trains in mid-high latitudes on persistent heavy rain during the first rainy season over South China. Climate Dyn., 53, 29492968, https://doi.org/10.1007/s00382-019-04670-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107, 9941013, https://doi.org/10.1175/1520-0493(1979)107<0994:LSAODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15, 18551874, https://doi.org/10.1175/1520-0442(2002)015<1855:IADMRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omondi, P. A., and Coauthors, 2014: Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Climatol., 34, 12621277, https://doi.org/10.1002/joc.3763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., and S. Seneviratne, 2012: Global changes in extreme events: Regional and seasonal dimension. Climatic Change, 110, 669696, https://doi.org/10.1007/s10584-011-0122-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. S., J. G. Jhun, and E. J. Lee, 2009: Characteristic large-scale circulation anomalies associated with persistent features of extreme precipitation over northeast Asia from premonsoon season to monsoon season. J. Geophys. Res., 114, D11108, https://doi.org/10.1029/2008JD011031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., and T. Zhou, 2017: Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res., 122, 90609075, https://doi.org/10.1002/2016JD026424.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., R. M. Gairola, and A. K. Mitra, 2015: Comparison of large-scale global land precipitation from multisatellite and reanalysis products with gauge-based GPCC data sets. Theor. Appl. Climatol., 121, 303317, https://doi.org/10.1007/s00704-014-1245-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, and K. Ikeda, 2016: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queralt, S., E. Hernandez, D. Barriopedro, D. Gallego, P. Ribera, and C. Casanova, 2009: North Atlantic Oscillation influence and weather types associated with winter total and extreme precipitation events in Spain. Atmos. Res., 94, 675683, https://doi.org/10.1016/j.atmosres.2009.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, X., X. Yang, T. Zhou, and J. Fang, 2011: Diagnostic comparison of wintertime East Asian subtropical jet and polar-front jet: Large-scale characteristics and transient eddy activities. Acta Meteor. Sin., 25, 2133, https://doi.org/10.1007/s13351-011-0002-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revadekar, J. V., and B. Preethi, 2011: Statistical analysis of the relationship between summer monsoon precipitation extremes and foodgrain yield over India. Int. J. Climatol., 32, 419429, https://doi.org/10.1002/joc.2282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, P. L. Vidale, and C. Schaer, 2008: The precipitation climate of Central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, https://doi.org/10.1002/joc.1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, Y., and Coauthors, 2018: Role of the Tian Shan Mountains and Pamir Plateau in increasing spatiotemporal differentiation of precipitation over interior Asia. J. Climate, 31, 81418162, https://doi.org/10.1175/JCLI-D-17-0594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, V. B. S., V. E. Kousky, and R. W. Higgins, 2011: Daily precipitation statistics for South America: An intercomparison between NCEP reanalyses and observations. J. Hydrometeor., 12, 101117, https://doi.org/10.1175/2010JHM1303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, G., and Coauthors, 2020: Analysis of local land–atmosphere coupling in rainy season over a typical underlying surface in Tibetan Plateau based on field measurements and ERA5. Atmos. Res., 243, 105025, https://doi.org/10.1016/j.atmosres.2020.105025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, https://doi.org/10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varis, O., 2014: Resources: Curb vast water use in central Asia. Nature, 514, 2729, https://doi.org/10.1038/514027a.

  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2020: The belt and road region climate change: Facts, impacts and possible risks (in Chinese). Trans. Atmos. Sci., 43, 19.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Y. Qian, Y. Zhang, C. Zhao, L. R. Leung, A. Huang, and C. Xiao, 2016: Observed variability of summer precipitation pattern and extreme events in East China associated with variations of the East Asian summer monsoon. Int. J. Climatol., 36, 29422957, https://doi.org/10.1002/joc.4530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., M. Zhang, M. Sun, B. Wang, and X. Li, 2013: Changes in precipitation extremes in alpine areas of the Chinese Tianshan Mountains, central Asia, 1961–2011. Quat. Int., 311, 97107, https://doi.org/10.1016/j.quaint.2013.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., F. Jiang, and Y. Ding, 2015: Spatial coherence of variations in seasonal extreme precipitation events over Northwest Arid Region, China. Int. J. Climatol., 35, 46424654, https://doi.org/10.1002/joc.4313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., H. Huang, and Z. Huang, 2011: The causation analysis of persistent heavy rain over southern China during May–June 2010. Meteor. Mon., 37, 12061215, https://doi.org/10.7519/j.issn.1000-0526.2011.10.003.

    • Search Google Scholar
    • Export Citation
  • Wen, M., S. Yang, A. Kumar, and P. Zhang, 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 11111131, https://doi.org/10.1175/2008MWR2638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Principal component (EOF) analysis. Statistical Methods in the Atmospheric Sciences, 2nd ed. Elsevier, 463–508.

  • Wolff, C., B. Plessen, A. S. Dudashvilli, S. F. M. Breitenbach, H. Cheng, L. R. Edwards, and M. R. Strecker, 2017: Precipitation evolution of Central Asia during the last 5000 years. Holocene, 27, 142154, https://doi.org/10.1177/0959683616652711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C., and G. Huang, 2015: Changes in heavy precipitation and floods in the upstream of the Beijiang River basin. South China. Int. J. Climatol., 35, 29782992, https://doi.org/10.1002/joc.4187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., 2001: Comparison between the complete form vorticity equation and the traditional vorticity equation. Acta Meteor. Sin., 59, 385392.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. Guo, J. Yin, G. Yang, Y. Zhong, and D. Liu, 2018: On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels. J. Hydrol., 562, 305317, https://doi.org/10.1016/j.jhydrol.2018.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Xue, T., G. Tang, L. Sun, Y. Wu, Y. Liu, and Y. Dou, 2017: Long-term trends in precipitation and precipitation extremes and underlying mechanisms in the U.S. Great Basin during 1951–2013. J. Geophys. Res., 122, 61526169, https://doi.org/10.1002/2017JD026682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., 2007: Anomalous perturbation kinetic energy of Rossby wave along East Asian westerly jet and its association with summer rainfall in China. Chin. J. Atmos. Sci., 31, 586595, http://doi.org/10.3878/j.issn.1006-9895.2007.04.04.

    • Search Google Scholar
    • Export Citation
  • Yin, Z. Y., H. Wang, and X. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and central Asia. J. Climate, 27, 78307848, https://doi.org/10.1175/JCLI-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., H. Chen, and S. Zhao, 2019: A tripole pattern of summertime rainfall and the teleconnections linking northern China to the Indian subcontinent. J. Climate, 32, 36373653, https://doi.org/10.1175/JCLI-D-18-0659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Z. Chen, H. Chen, Q. Ma, and T. Asaminew, 2020: North Atlantic multidecadal variability enhancing decadal extratropical extremes in boreal late summer in the early 21st century. J. Climate, 33, 60476064, https://doi.org/10.1175/JCLI-D-19-0536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., Y. Chen, Y. Shen, and Y. Li, 2017: Changes of precipitation extremes in arid central Asia. Quat. Int., 436, 1627, https://doi.org/10.1016/j.quaint.2016.12.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., Y. Chen, Y. Shen, and B. Li, 2019: Tracking climate change in Central Asia through temperature and precipitation extremes. J. Geogr. Sci., 29, 328, https://doi.org/10.1007/s11442-019-1581-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., H. Yu, D. K. Andrew, Y. Wei, J. Huang, and Y. Ren, 2020: Greater probability of extreme precipitation under 1.5°C and 2°C warming limits over East-Central Asia. Climatic Change, 162, 603619, https://doi.org/10.1007/s10584-020-02725-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., V. P. Singh, J. Li, F. Jiang, and Y. Bai, 2012: Spatio-temporal variations of precipitation extremes in Xinjiang, China. J. Hydrol., 434–435, 718, https://doi.org/10.1016/j.jhydrol.2012.02.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and Coauthors, 2014: Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y. B., and Coauthors, 2017: On the teleconnection patterns to precipitation in the eastern Tianshan Mountains, China. Climate Dyn., 49, 31233139, https://doi.org/10.1007/s00382-016-3500-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 230 230 23
Full Text Views 98 98 20
PDF Downloads 133 133 32

How Do Multiscale Interactions Affect Extreme Precipitation in Eastern Central Asia?

View More View Less
  • 1 a Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 b Key Laboratory of Mechanics on Disaster and Environment in Western China Ministry of Education, Lanzhou University, Lanzhou, China
  • | 3 c National Meteorological Agency of Ethiopia, Addis Ababa, Ethiopia
  • | 4 d Key Laboratory for Cloud Physics, China Meteorological Administration, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The variability of extreme precipitation in eastern central Asia (ECA) during summer (June–August) and its corresponding mechanisms were investigated from a multiscale synergy perspective. Extreme precipitation in ECA displayed a quasi-monopole increasing pattern with abrupt change since 2000/01, which was likely dominated by increased high-latitude North Atlantic SST anomalies as shown by diagnosed and numerical experiment results. Increased SST via adjusting the quasi-stationary wave train that related to the negative North Atlantic Oscillation (NAO) and the east Atlantic/western Russia (EA/WR) pattern guided the cyclonic anomaly in central Asia, deepened the Lake Balkhash trough, and enhanced the moisture convergence in ECA. These anomalies also exhibited interdecadal enhancement after 2000. On the synoptic scale, two synoptic transient wave trains correlated with extreme precipitation in ECA by amplifying the amplitude of the quasi-stationary waves and guiding transient eddies in ECA. The induced transient eddies and deepened Lake Balkhash trough strengthened positive meridional vorticity advection and local positive vorticity, which promoted ascending motions, and guided the southerly warm moisture in ECA especially after 2000. Meanwhile, additional mesoscale vortices were stimulated and strengthened near the Tianshan Mountain in front of the wave trough, which, together with the enhanced meridional circulation, further increased extreme precipitation in ECA.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Zhang, zhangj@nuist.edu.cn

Abstract

The variability of extreme precipitation in eastern central Asia (ECA) during summer (June–August) and its corresponding mechanisms were investigated from a multiscale synergy perspective. Extreme precipitation in ECA displayed a quasi-monopole increasing pattern with abrupt change since 2000/01, which was likely dominated by increased high-latitude North Atlantic SST anomalies as shown by diagnosed and numerical experiment results. Increased SST via adjusting the quasi-stationary wave train that related to the negative North Atlantic Oscillation (NAO) and the east Atlantic/western Russia (EA/WR) pattern guided the cyclonic anomaly in central Asia, deepened the Lake Balkhash trough, and enhanced the moisture convergence in ECA. These anomalies also exhibited interdecadal enhancement after 2000. On the synoptic scale, two synoptic transient wave trains correlated with extreme precipitation in ECA by amplifying the amplitude of the quasi-stationary waves and guiding transient eddies in ECA. The induced transient eddies and deepened Lake Balkhash trough strengthened positive meridional vorticity advection and local positive vorticity, which promoted ascending motions, and guided the southerly warm moisture in ECA especially after 2000. Meanwhile, additional mesoscale vortices were stimulated and strengthened near the Tianshan Mountain in front of the wave trough, which, together with the enhanced meridional circulation, further increased extreme precipitation in ECA.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Zhang, zhangj@nuist.edu.cn
Save