• Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, J., N. C. Johnson, S. Baxter, S. B. Feldstein, D. S. Harnos, and M. L. L’Heureux, 2017: The predictors and forecast skill of Northern Hemisphere teleconnection patterns for lead times of 3–4 weeks. Mon. Wea. Rev., 145, 28552877, https://doi.org/10.1175/MWR-D-16-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665672, https://doi.org/10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., and H. M. van den Dool, 1997: Asymmetric impact of tropical SST anomalies on atmospheric internal variability over the North Pacific. J. Atmos. Sci., 54, 725740, https://doi.org/10.1175/1520-0469(1997)054<0725:AIOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., and H. M. van den Dool, 1999: Significant change of extratropical natural variability and potential predictability associated with the El Niño/Southern Oscillation. Tellus, 51A, 790802, https://doi.org/10.3402/tellusa.v51i5.14493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., M. Takahashi, and H. F. Graf, 2003: Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res., 108, 4797, https://doi.org/10.1029/2003JD003834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., S. Yang, and R. H. Huang, 2005: Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res., 110, D14110, https://doi.org/10.1029/2004JD005669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., X. Q. Lan, L. Wang, and Y. Ma, 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chin. Sci. Bull., 58, 13551362, https://doi.org/10.1007/s11434-012-5654-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, H. N., W. Zhou, H. Y. Mok, and M. C. Wu, 2012: Relationship between Ural–Siberian blocking and the East Asian winter monsoon in relation to the Arctic Oscillation and the El Niño–Southern Oscillation. J. Climate, 25, 42424257, https://doi.org/10.1175/JCLI-D-11-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chongyin, L., 1990: A further study on interaction between anomalous winter monsoon in East Asia and El Nino events. Adv. Atmos. Sci., 7, 3646, https://doi.org/10.1007/BF02919166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., P. D. Sardeshmukh, and C. Penland, 2001: Changes of subseasonal variability associated with El Niño. J. Climate, 14, 33563374, https://doi.org/10.1175/1520-0442(2001)014<3356:COSVAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaconis, P., and B. Efron, 1983: Computer intensive methods in statistics. Sci. Amer., 248, 116130, https://doi.org/10.1038/scientificamerican0583-116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Wen, and S. Li, 1991: A study of dynamic structures of the Siberian high in winter. Acta Meteor. Sin., 4, 430439.

  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. CRC Monographs on Statistics and Applied Probability, Vol. 57, Chapman & Hall, 436 pp.

    • Crossref
    • Export Citation
  • Gong, D.-Y., and C. H. Ho, 2002: The Siberian high and climate change over middle to high latitude Asia. Theor. Appl. Climatol., 72, 19, https://doi.org/10.1007/s007040200008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and S.-W. Wang, 2003: Influence of Arctic Oscillation on winter climate over China. J. Geogr. Sci., 13, 208216, https://doi.org/10.1007/BF02837460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., S.-W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076, https://doi.org/10.1029/2000GL012311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, J. I., M. D. Yamanaka, J. Matsumoto, S. Fukao, P. A. Winarso, and T. Sribimawati, 2002: Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteor. Soc. Japan, 80, 285310, https://doi.org/10.2151/jmsj.80.285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., and Coauthors, 2013: Statistical methods for the analysis of simulated and observed climate data: Applied in projects and institutions dealing with climate change impact and adaptation. CSC Rep. 13., 135 pp., https://www.climate-service-center.de/imperia/md/content/csc/projekte/csc-report13_englisch_final-mit_umschlag.pdf.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hesterberg, T., S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 2003: Bootstrap methods and permutation tests. The Practice of Business Statistics, W. H. Freeman and Company, 85 pp., https://statweb.stanford.edu/~tibs/stat315a/Supplements/bootstrap.pdf.

  • Huang, W., R. Chen, Z. Yang, B. Wang, and W. Ma, 2017: Exploring the combined effects of the Arctic Oscillation and ENSO on the wintertime climate over East Asia using self-organizing maps. J. Geophys. Res. Atmos., 122, 91079129, https://doi.org/10.1002/2017JD026812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, https://doi.org/10.1029/2005GL023024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., 1998: Relationship between El Niño and Korean climate variability. J. Korean Meteor. Soc., 34, 390396.

  • Kim, Y., K. Y. Kim, and J. G. Jhun, 2013: Seasonal evolution mechanism of the East Asian winter monsoon and its interannual variability. Climate Dyn., 41, 12131228, https://doi.org/10.1007/s00382-012-1491-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KMA, 2019: 2018 Annual abnormal climate report. Korea Meteorological Agency Rep., 200 pp., http://www.climate.go.kr/home/cc_data/2019/2018_abnormal_climate_report.pdf.

  • Lee, D.-R., 1998: Relationships of El Niño and La Niña with both temperature and precipitation in South Korea. Hangug Sujaweon Haghoe Nonmunjib, 31, 807819.

    • Search Google Scholar
    • Export Citation
  • Lee, H. S., and J. G. Jhun, 2006: Two types of the Asian continental blocking and their relation to the East Asian monsoon during the boreal winter. Geophys. Res. Lett., 33, L22707, https://doi.org/10.1029/2006GL027948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. H., and P. Y. Julien, 2016: ENSO impacts on temperature over South Korea. Int. J. Climatol., 36, 36513663, https://doi.org/10.1002/joc.4581.

  • Li, M., D. Luo, I. Simmonds, A. Dai, L. Zhong, and Y. Yao, 2021: Anchoring of atmospheric teleconnection patterns by Arctic sea ice loss and its link to winter cold anomalies in East Asia. Int. J. Climatol., 41, 547558, https://doi.org/10.1002/joc.6637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liren, J., S. Sun, K. Arpe, and L. Bengtsson, 1997: Model study on the interannual variability of Asian winter monsoon and its influence. Adv. Atmos. Sci., 14, 122, https://doi.org/10.1007/s00376-997-0039-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., and Coauthors, 2016a: Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 39493971, https://doi.org/10.1175/JCLI-D-15-0612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, 2016b: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, https://doi.org/10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Yao, A. Dai, I. Simmonds, and L. Zhong, 2017: Increased quasi-stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation. J. Climate, 30, 35693587, https://doi.org/10.1175/JCLI-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudelsee, M., 2013: Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, 474 pp.

  • Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, https://doi.org/10.1029/2005GL024784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S. J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. J., and J. B. Ahn, 2016: Combined effect of the Arctic Oscillation and the western Pacific pattern on East Asia winter temperature. Climate Dyn., 46, 32053221, https://doi.org/10.1007/s00382-015-2763-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. J. Ho, S. Yang, and J. H. Jeong, 2010: Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. J. Geophys. Res., 115, D23122, https://doi.org/10.1029/2010JD014794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, https://doi.org/10.1175/2010JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, https://doi.org/10.1007/s00382-013-1817-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49ES53, https://doi.org/10.1175/BAMS-D-14-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and I. Simmonds, 2021: Midlatitude winter extreme temperature events and connections with anomalies in the Arctic and tropics. J. Climate, 34, 37333749, https://doi.org/10.1175/JCLI-D-20-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, K., and R. Kawamura, 2009: Remote response of the East Asian winter monsoon to tropical forcing related to El Niño–Southern Oscillation. J. Geophys. Res., 114, D06105, https://doi.org/10.1029/2008JD010824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., R. Wu, and Y. Jiao, 2018: Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China. Climate Dyn., 50, 46194634, https://doi.org/10.1007/s00382-017-3894-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, https://doi.org/10.1175/JAS3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2013: Interannual variability of the East Asian winter monsoon and related modulations of the planetary waves. J. Climate, 26, 94459461, https://doi.org/10.1175/JCLI-D-12-00842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, C. Y., and N. C. Lau, 2005: The impact of ENSO on atmospheric intraseasonal variability as inferred from observations and GCM simulations. J. Climate, 18, 19021924, https://doi.org/10.1175/JCLI3399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, https://doi.org/10.1126/science.1058958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, T., and T. Yasunari, 1996: Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Japan, 74, 399413, https://doi.org/10.2151/jmsj1965.74.4_399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Vitart, F., A. W. Robertson, and D. L. Anderson, 2012: Subseasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. WMO Bull., 61, 2328.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Z. Wu, C. Chang, J. Liu, J. Li, and T. Zhou, 2010: Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J. Climate, 23, 14951512, https://doi.org/10.1175/2009JCLI3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010a: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010b: How well do existing indices measure the strength of the East Asian winter monsoon? Adv. Atmos. Sci., 27, 855870, https://doi.org/10.1007/s00376-009-9094-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and A. W. Robertson, 2019: Week 3-4 predictability over the United States assessed from two operational ensemble prediction systems. Climate Dyn., 52, 58615875, https://doi.org/10.1007/s00382-018-4484-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and Z. Lin, 2009: The leading mode of wintertime cold wave frequency in northern China during the last 42 years and its association with Arctic Oscillation. Atmos. Ocean. Sci. Lett., 2, 130134, https://doi.org/10.1080/16742834.2009.11446794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, K., M. Takahashi, and W. Chen, 2015: Long-term changes in the relationship between stratospheric circulation and East Asian winter monsoon. Atmos. Sci. Lett., 16, 359365, https://doi.org/10.1002/asl2.568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C., H.-F. Graf, and H. Ronghui, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 4860, https://doi.org/10.1007/s00376-000-0042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, M., S. Yang, A. Kumar, and P. Zhang, 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 11111131, https://doi.org/10.1175/2008MWR2638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, X. Y., Y. Y. Hu, and J. P. Liu, 2013: The extremely cold 2009–2010 winter and its relationship with the Arctic Oscillation. Front. Phys., 8, 590603, https://doi.org/10.1007/s11467-013-0376-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and C. Li, 2008: Influence of Arctic Oscillation on temperature and precipitation in winter (in Chinese). Climatic Environ. Res., 13, 395404.

    • Search Google Scholar
    • Export Citation
  • Yao, Y., D. Luo, A. Dai, and I. Simmonds, 2017: Increased quasi-stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 35493568, https://doi.org/10.1175/JCLI-D-16-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S. R., S. W. Yeh, Y. Kim, and S. Y. Yim, 2018: Monthly climate variation over Korea in relation to the two types of ENSO evolution. Int. J. Climatol., 38, 811824, https://doi.org/10.1002/joc.5212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yihui, D., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281292, https://doi.org/10.1007/BF01026822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, K., and K. Yamazaki, 2011: Tropical cooling in the case of stratospheric sudden warming in January 2009: Focus on the tropical tropopause layer. Atmos. Chem. Phys., 11, 63256336, https://doi.org/10.5194/acp-11-6325-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z., Z. Z. Hu, and M. L’Heureux, 2016: Predictable components of ENSO evolution in real-time multi-model predictions. Sci. Rep., 6, 35909, https://doi.org/10.1038/srep35909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., R. W. Higgins, and H. K. Kim, 2001: Relationships between El Niño–Southern Oscillation and the Arctic Oscillation: A climate–weather link. NCEP/Climate Prediction Center, https://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/8/.

  • Zuo, J., H. L. Ren, J. Wu, Y. Nie, and Q. Li, 2016: Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2. Dyn. Atmos. Oceans, 75, 3345, https://doi.org/10.1016/j.dynatmoce.2016.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 296 296 60
Full Text Views 99 99 17
PDF Downloads 141 141 31

Combined Effect of ENSO and AO on Winter Temperatures of the Korean Peninsula on Subseasonal Time Scales

View More View Less
  • 1 a Climate Services and Research Department, APEC Climate Center, Busan, South Korea
  • | 2 b Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The combined effect of the El Niño–Southern Oscillation (ENSO) and Arctic Oscillation (AO) on the variability of boreal winter (December–February) temperature over South Korea is examined at the subseasonal time scale using subseasonal-to-seasonal (S2S) hindcast data. Daily hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) database is used. We selected the following six composite cases using a threshold of ±0.5 for each index: El Niño and positive AO (EP), El Niño and negative AO (EN), La Niña and positive AO (LP), La Niña and negative AO (LN), positive AO only (PA), and negative AO only (NA). Results from reanalysis data suggest the possibility of using these two climate factors as predictors for 1-month prediction of South Korea up to 4 weeks in advance. Thus, we confirmed that the ENSO plays a statistically significant role in strengthening (weakening) the AO influences on the temperature anomalies in the in phase (out of phase). For example, there is a significant increase (decrease) in mean temperature anomalies through positive (negative) geopotential height (GPH) anomalies and warm (cold) temperature advection over South Korea in the EP (LN) case. The ECMWF S2S hindcast demonstrated an acceptable ability to reproduce circulation patterns over East Asia up to 3 weeks in advance, and sufficiently predicted weekly mean temperature anomalies over South Korea in EP, LN, and PA cases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Woo-Seop Lee, wslee@apcc21.org

Abstract

The combined effect of the El Niño–Southern Oscillation (ENSO) and Arctic Oscillation (AO) on the variability of boreal winter (December–February) temperature over South Korea is examined at the subseasonal time scale using subseasonal-to-seasonal (S2S) hindcast data. Daily hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) database is used. We selected the following six composite cases using a threshold of ±0.5 for each index: El Niño and positive AO (EP), El Niño and negative AO (EN), La Niña and positive AO (LP), La Niña and negative AO (LN), positive AO only (PA), and negative AO only (NA). Results from reanalysis data suggest the possibility of using these two climate factors as predictors for 1-month prediction of South Korea up to 4 weeks in advance. Thus, we confirmed that the ENSO plays a statistically significant role in strengthening (weakening) the AO influences on the temperature anomalies in the in phase (out of phase). For example, there is a significant increase (decrease) in mean temperature anomalies through positive (negative) geopotential height (GPH) anomalies and warm (cold) temperature advection over South Korea in the EP (LN) case. The ECMWF S2S hindcast demonstrated an acceptable ability to reproduce circulation patterns over East Asia up to 3 weeks in advance, and sufficiently predicted weekly mean temperature anomalies over South Korea in EP, LN, and PA cases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Woo-Seop Lee, wslee@apcc21.org
Save