• Albers, J. R., and T. Birner, 2014: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, https://doi.org/10.1175/JAS-D-14-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere-troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, https://doi.org/10.1002/qj.479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, and I. T. Jolliffe, 2009: Spatial weighting and iterative projection methods for EOFs. J. Climate, 22, 234243, https://doi.org/10.1175/2008JCLI2147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., L. Ferranti, and R. W. Lee, 2018: The influence of the stratospheric state on North Atlantic weather regimes. Quart. J. Roy. Meteor. Soc., 144, 11401151, https://doi.org/10.1002/qj.3280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2001: Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis. J. Geophys. Res., 106, 27 30727 322, https://doi.org/10.1029/2000JD000214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coughlin, K., and L. J. Gray, 2009: A continuum of sudden stratospheric warmings. J. Atmos. Sci., 66, 531540, https://doi.org/10.1175/2008JAS2792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., 2019: Estimating the frequency of sudden stratospheric warming events from surface observations of the North Atlantic Oscillation. J. Geophys. Res. Atmos., 124, 31803194, https://doi.org/10.1029/2018JD030077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2020: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923.

    • Crossref
    • Export Citation
  • Dunkerton, T. J., and D. P. Delisi, 1986: Evolution of potential vorticity in the winter stratosphere of January-February 1979. J. Geophys. Res., 91, 11991208, https://doi.org/10.1029/JD091iD01p01199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and P. Martineau, 2018: Quantifying the variability of the annular modes: Reanalysis uncertainty vs. sampling uncertainty. Atmos. Chem. Phys., 18, 17 09917 117, https://doi.org/10.5194/acp-18-17099-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., C. Orbe, and L. M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, L24801, https://doi.org/10.1029/2009GL040913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., 2003: The influence of the equatorial upper stratosphere on stratospheric sudden warmings. Geophys. Res. Lett., 30, 1166, https://doi.org/10.1029/2002GL016430.

    • Crossref
    • Export Citation
  • Gray, L. J., S. Sparrow, M. Juckes, A. O’Neill, and D. G. Andrews, 2003: Flow regimes in the winter stratosphere of the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 129, 925945, https://doi.org/10.1256/qj.02.82.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., M. J. Brown, J. Knight, M. Andrews, H. Lu, C. O’Reilly, and J. Anstey, 2020: Forecasting extreme stratospheric polar vortex events. Nat. Commun., 11, 4630, https://doi.org/10.1038/s41467-020-18299-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greer, K. R., J. P. Thayer, and V. L. Harvey, 2013: A climatology of polar winter stratopause warmings and associated planetary wave breaking. J. Geophys. Res. Atmos., 118, 41684180, https://doi.org/10.1002/jgrd.50289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greer, K. R., J. P. Thayer, V. L. Harvey, and E. D. Peck, 2015: Modeling and mechanisms of polar winter upper stratosphere/lower mesosphere disturbances in WACCM. J. Geophys. Res. Atmos., 120, 76357647, https://doi.org/10.1002/2015JD023471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., and M. H. Hitchman, 1996: A climatology of the Aleutian High. J. Atmos. Sci., 53, 20882102, https://doi.org/10.1175/1520-0469(1996)053<2088:ACOTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., R. B. Pierce, T. D. Fairlie, and M. H. Hitchman, 2002: A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res., 107, 4442, https://doi.org/10.1029/2001JD001471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and T. G. Shepherd, 2013: Zonal-mean dynamics of extended recoveries from stratospheric sudden warmings. J. Atmos. Sci., 70, 688707, https://doi.org/10.1175/JAS-D-12-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and P. H. Haynes, 2016: Stratospheric control of planetary waves. Geophys. Res. Lett., 43, 11 884–11 892, https://doi.org/10.1002/2016GL071372.

    • Crossref
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64, 19221940, https://doi.org/10.1175/JAS3927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2009: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci., 66, 935946, https://doi.org/10.1175/2008JAS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and M. E. McIntyre, 1985: Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449492, https://doi.org/10.1017/S0022112085003019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107, 4749, https://doi.org/10.1029/2002JD002224.

  • Kodera, K., K. Matthes, K. Shibata, U. Langematz, and Y. Kuroda, 2003: Solar impact on the lower mesospheric subtropical jet: A comparative study with general circulation model simulations. Geophys. Res. Lett., 30, 1315, https://doi.org/10.1029/2002GL016124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. J. Geophys. Res. Atmos., 121, 8094, https://doi.org/10.1002/2015JD023359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 2004: Role of the polar-night jet oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere in winter. J. Geophys. Res., 109, D11112, https://doi.org/10.1029/2003JD004123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindgren, E. A., and A. Sheshadri, 2020: The role of wave–wave interactions in sudden stratospheric warming formation. Weather Climate Dyn., 1, 93109, https://doi.org/10.5194/wcd-1-93-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., M. P. Baldwin, L. J. Gray, and M. J. Jarvis, 2008: Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res., 113, D10114, https://doi.org/10.1029/2007JD009647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., M. H. Hitchman, L. J. Gray, J. A. Anstey, and S. M. Osprey, 2020: On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter. Quart. J. Roy. Meteor. Soc., 146, 19391959, https://doi.org/10.1002/qj.3775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., R. W. Zurek, A. O’Neill, and R. Swinbank, 1994: On the motion of air through the stratospheric polar vortex. J. Atmos. Sci., 51, 29732994, https://doi.org/10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2008: The high Arctic in extreme winters: Vortex, temperature, and MLS and ACE-FTS trace gas evolution. Atmos. Chem. Phys., 8, 505522, https://doi.org/10.5194/acp-8-505-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., G. Chen, S.-W. Son, and J. Kim, 2018: Lower-stratospheric control of the frequency of sudden stratospheric warming events. J. Geophys. Res. Atmos., 123, 30513070, https://doi.org/10.1002/2017JD027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., G. I. T. Masukwedza, P. Hitchcock, and I. R. Simpson, 2020: A regime perspective on the North Atlantic eddy-driven jet response to sudden stratospheric warmings. J. Climate, 33, 39013917, https://doi.org/10.1175/JCLI-D-19-0702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, https://doi.org/10.1038/305593a0.

  • McIntyre, M. E., and T. N. Palmer, 1984: The surf zone in the stratosphere. J. Atmos. Terr. Phys., 46, 825849, https://doi.org/10.1016/0021-9169(84)90063-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, A., and V. D. Pope, 1988: Simulations of linear and nonlinear disturbances in the stratosphere. Quart. J. Roy. Meteor. Soc., 114, 10631110, https://doi.org/10.1002/qj.49711448210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, A., W. L. Grose, V. D. Pope, H. Maclean, and R. Swinbank, 1994: Evolution of the stratosphere during northern winter 1991/92 as diagnosed from U.K. Meteorological Office analyses. J. Atmos. Sci., 51, 28002817, https://doi.org/10.1175/1520-0469(1994)051<2800:EOTSDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, https://doi.org/10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and R. Saravanan, 2000: The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J. Atmos. Sci., 57, 36633685, https://doi.org/10.1175/1520-0469(2000)057<3663:TTDSOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, https://doi.org/10.1029/2005GL023226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

  • Scott, R. K., and L. M. Polvani, 2004: Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett., 31, L02115, https://doi.org/10.1029/2003GL017965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, https://doi.org/10.1038/ngeo1698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365, https://doi.org/10.1175/2008JAS2758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivan, Y., S. Rozenberg, A. Halstuch, and A. A. Ishaaya, 2016: Nonlinear wave interactions between short pulses of different spatio-temporal extents. Sci. Rep., 6, 29010, https://doi.org/10.1038/srep29010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci., 43, 26002618, https://doi.org/10.1175/1520-0469(1986)043<2600:NTOZAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and D. G. Dritschel, 1999: The dependence of Rossby wave breaking on the vertical structure of the polar vortex. J. Atmos. Sci., 56, 23592375, https://doi.org/10.1175/1520-0469(1999)056<2359:TDORWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I. P., H. Lu, N. J. Mitchell, and T. Phillips, 2015: Dynamical response to the QBO in the northern winter stratosphere: Signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci., 72, 44874507, https://doi.org/10.1175/JAS-D-14-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I. P., C. I. Garfinkel, E. P. Gerber, M. Jucker, V. Aquila, and L. D. Oman, 2018: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Climate, 32, 85108, https://doi.org/10.1175/JCLI-D-18-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 186 186 19
Full Text Views 69 69 15
PDF Downloads 89 89 23

Regime Behavior in the Upper Stratosphere as a Precursor of Stratosphere–Troposphere Coupling in the Northern Winter

View More View Less
  • 1 a British Antarctic Survey, Cambridge, United Kingdom
  • | 2 b National Centre for Atmospheric Science, Clarendon Laboratory, Department of Physics, Oxford University, Oxford, United Kingdom
  • | 3 c Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A new regime index is constructed to capture the seasonal development of the stratospheric polar vortex in the northern winter, based on the standard deviation of Ertel’s potential vorticity in the upper stratosphere in November–December. The narrow-jet flow regime is characterized by a polar vortex that is more confined to high latitudes in the early winter upper stratosphere. This upper-level vortex configuration is more susceptible to the disturbances of upward propagating planetary-scale Rossby waves; the stratospheric polar vortex thus weakens earlier and is vertically shallower. The wide-jet flow regime is characterized by a broader-than-average polar vortex that extends further into the subtropics in the early winter upper stratosphere. The polar night jet then gradually strengthens, moves poleward, and penetrates deep into the lowermost stratosphere, with a sharply defined polar vortex edge due to more frequent Rossby wave breaking. Composite difference analyses show that the wide- and narrow-jet regimes, defined in the uppermost stratosphere in November–December, lead to different circulation anomalies of the lower stratosphere and the troposphere in January–February, offering the potential for improved predictability of subseasonal to seasonal forecasts up to two months ahead. The lower-tropospheric responses in January–February are zonally asymmetric. The narrow-jet regime projects most strongly over the North Atlantic, with an equatorward-shifted and/or broader midlatitude westerly jet. The wide-jet-regime response is characterized by a weakened midlatitude westerly jet over the North Pacific. The two flow regimes also differ in their impacts on the storm track over western Europe and the east coast of North America, which may have implications for extreme weather events in those regions.

Corresponding author: Hua Lu, hlu@bas.ac.uk

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Abstract

A new regime index is constructed to capture the seasonal development of the stratospheric polar vortex in the northern winter, based on the standard deviation of Ertel’s potential vorticity in the upper stratosphere in November–December. The narrow-jet flow regime is characterized by a polar vortex that is more confined to high latitudes in the early winter upper stratosphere. This upper-level vortex configuration is more susceptible to the disturbances of upward propagating planetary-scale Rossby waves; the stratospheric polar vortex thus weakens earlier and is vertically shallower. The wide-jet flow regime is characterized by a broader-than-average polar vortex that extends further into the subtropics in the early winter upper stratosphere. The polar night jet then gradually strengthens, moves poleward, and penetrates deep into the lowermost stratosphere, with a sharply defined polar vortex edge due to more frequent Rossby wave breaking. Composite difference analyses show that the wide- and narrow-jet regimes, defined in the uppermost stratosphere in November–December, lead to different circulation anomalies of the lower stratosphere and the troposphere in January–February, offering the potential for improved predictability of subseasonal to seasonal forecasts up to two months ahead. The lower-tropospheric responses in January–February are zonally asymmetric. The narrow-jet regime projects most strongly over the North Atlantic, with an equatorward-shifted and/or broader midlatitude westerly jet. The wide-jet-regime response is characterized by a weakened midlatitude westerly jet over the North Pacific. The two flow regimes also differ in their impacts on the storm track over western Europe and the east coast of North America, which may have implications for extreme weather events in those regions.

Corresponding author: Hua Lu, hlu@bas.ac.uk

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Save