• Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., J. M. Wallace, and J. M. Monteiro, 2016: Seasonality of the structure and propagation characteristics of the MJO. J. Atmos. Sci., 73, 35113526, https://doi.org/10.1175/JAS-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, https://doi.org/10.1007/s003820100161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. M. Wallace, and K. K. Tung, 2017: Pairwise-rotated EOFs of global SST. J. Climate, 30, 54735489, https://doi.org/10.1175/JCLI-D-16-0786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., C.-C. Wu, and E.-J. Cha, 2010: Change of tropical cyclone activity by Pacific–Japan teleconnection pattern in the western North Pacific. J. Geophys. Res., 115, D19114, https://doi.org/10.1029/2010JD013866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, https://doi.org/10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, https://doi.org/10.1175/MWR3204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and R. A. Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, https://doi.org/10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and P. K. Xavier, 2005: Dynamics of “internal” interannual variability of the Indian summer monsoon in a GCM. J. Geophys. Res., 110, D24104, https://doi.org/10.1029/2005JD006042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2019: Madden–Julian oscillation impacts on South American summer monsoon season: Precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Climate Dyn., 53, 907932, https://doi.org/10.1007/s00382-019-04622-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, S. P. Xie, and S. M. Long, 2019: Effect of the mean flow on the anomalous anticyclone over the Indo-northwest Pacific in post-El Niño summers. Climate Dyn., 53, 57255741, https://doi.org/10.1007/s00382-019-04893-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and N.-C. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, https://doi.org/10.1175/2007JCLI2024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Á. F. Adames, M. Zhao, D. Waliser, and E. Maloney, 2018: A unified moisture mode framework for seasonality of the Madden–Julian oscillation. J. Climate, 31, 42154224, https://doi.org/10.1175/JCLI-D-17-0671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jie, W., F. Vitart, T. Wu, and X. Liu, 2017: Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction project (S2S) database. Quart. J. Roy. Meteor. Soc., 143, 22822295, https://doi.org/10.1002/qj.3085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, S., A. Sahai, and B. Goswami, 2009: Eastward propagating MJO during boreal summer and Indian monsoon droughts. Climate Dyn., 32, 11391153, https://doi.org/10.1007/s00382-008-0412-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, https://doi.org/10.1029/2011JD016031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2011: Dominant mode of climate variability, intermodel diversity, and projected future changes over the summertime western North Pacific simulated in the CMIP3 models. J. Climate, 24, 39353955, https://doi.org/10.1175/2011JCLI3907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I. S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, https://doi.org/10.1175/JCLI3684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., Sun, Z. and Wu, G., 2010: 20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Climate Dyn., 34, 747761, https://doi.org/10.1007/s00382-009-0628-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and J. T. Bacmeister, 2012: Diagnosis of tropical biases and the MJO from patterns in the MERRA analysis tendency fields. J. Climate, 25, 62026214, https://doi.org/10.1175/JCLI-D-11-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, https://doi.org/10.1073/pnas.1119150109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., L. E. Back, P. A. O’Gorman, and K. A. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, https://doi.org/10.1029/2009GL039667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and P. Camberlin, 2006: Influence of the Madden–Julian oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Quart. J. Roy. Meteor. Soc., 132, 25212539, https://doi.org/10.1256/qj.05.104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., S. P. Xie, E. D. Maloney, S. P. de Szoeke, and T. Miyama, 2011: Intraseasonal variability in the far-east Pacific: Investigation of the role of air–sea coupling in a regional coupled model. Climate Dyn., 36, 867890, https://doi.org/10.1007/s00382-010-0786-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127, https://doi.org/10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suhas, E., J. M. Neena, and B. N. Goswami, 2012: Interannual variability of Indian summer monsoon arising from interactions between seasonal mean and intraseasonal oscillations. J. Atmos. Sci., 69, 17611774, https://doi.org/10.1175/JAS-D-11-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., A. W. Robertson, M. K. Tippett, and N. Acharya, 2017: Subseasonal predictability of boreal summer monsoon rainfall from ensemble forecasts. Front. Environ. Sci., 5, 67, https://doi.org/10.3389/fenvs.2017.00067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-Y., S.-P. Xie, and Y. Kosaka, 2018: Indo-western Pacific climate variability: ENSO forcing and internal dynamics in a tropical Pacific pacemaker simulation. J. Climate, 31, 10 12310 139, https://doi.org/10.1175/JCLI-D-18-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-Y., S.-P. Xie, and Y. Kosaka, 2020: ENSO-unrelated variability in Indo–northwest Pacific climate: Regional and coupled ocean–atmospheric feedback. J. Climate, 33, 40954108, https://doi.org/10.1175/JCLI-D-19-0426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., S.-P. Xie, and Z. Guan, 2020: Atmospheric internal variability in the summer Indo–northwestern Pacific: Role of the intraseasonal oscillation. J. Climate, 33, 33953410, https://doi.org/10.1175/JCLI-D-19-0794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498, https://doi.org/10.1175/2008JCLI2595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., and E. D. Maloney, 2015: Objective diagnostics and the Madden–Julian oscillation. Part II: Application to moist static energy and moisture budgets. J. Climate, 28, 77867808, https://doi.org/10.1175/JCLI-D-14-00689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., S. Yokoi, K. Inoue, and B. E. Mapes, 2019: Space–time spectral analysis of the moist static energy budget equation. J. Climate, 32, 501529, https://doi.org/10.1175/JCLI-D-18-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., S.-P. Xie, and Z.-Q. Zhou, 2016: Slow preconditioning for the abrupt convective jump over the northwest Pacific during summer. J. Climate, 29, 81038113, https://doi.org/10.1175/JCLI-D-16-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, G. J. Zhang, and W. Zhou, 2018: Evaluating AMIP skill in simulating interannual variability over the Indo–western Pacific. J. Climate, 31, 22532265, https://doi.org/10.1175/JCLI-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, and R. Zhang, 2019: Variability and predictability of Indian rainfall during the monsoon onset month of June. Geophys. Res. Lett., 46, 14 78214 788, https://doi.org/10.1029/2019GL085495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, and R. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 244 244 29
Full Text Views 142 142 10
PDF Downloads 180 180 16

A Common Base Mode of Asian Summer Monsoon Variability across Timescales

View More View Less
  • 1 a Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 b Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
  • | 3 c State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 4 d University of Chinese Academy of Sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The summer intraseasonal oscillation (ISO) is characterized by a northward-moving rainband in the Indo–western Pacific warm pool region. The physical origin of the ISO is not fully understood, as it is masked by strong interaction of convection and circulation. This study examines intraseasonal to interannual variability during June–August over the Indo–western Pacific warm pool region. The results show that the tropical northwest Pacific anomalous anticyclone (NWP-AAC) is a fundamental mode on both intraseasonal and interannual time scales, destabilized by the monsoon mean state, specifically through barotropic energy conversion and convective feedback in the low-level confluence between the monsoon westerlies and easterly trade winds. On the interannual time scale, the NWP-AAC shows a biennial tendency, reversing phase from the summer of El Niño to the summer that follows; the AAC in post–El Niño summer is excited indirectly through sea surface temperature anomalies in the Indo–NWP. On the intraseasonal time scale, the column-integrated moisture advection causes the NWP-AAC-related convection to propagate northward. Our results provide a unifying view of multiscale Asian summer monsoon variability, with important implications for subseasonal to seasonal prediction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoyong Guan, guanzy@nuist.edu.cn

Abstract

The summer intraseasonal oscillation (ISO) is characterized by a northward-moving rainband in the Indo–western Pacific warm pool region. The physical origin of the ISO is not fully understood, as it is masked by strong interaction of convection and circulation. This study examines intraseasonal to interannual variability during June–August over the Indo–western Pacific warm pool region. The results show that the tropical northwest Pacific anomalous anticyclone (NWP-AAC) is a fundamental mode on both intraseasonal and interannual time scales, destabilized by the monsoon mean state, specifically through barotropic energy conversion and convective feedback in the low-level confluence between the monsoon westerlies and easterly trade winds. On the interannual time scale, the NWP-AAC shows a biennial tendency, reversing phase from the summer of El Niño to the summer that follows; the AAC in post–El Niño summer is excited indirectly through sea surface temperature anomalies in the Indo–NWP. On the intraseasonal time scale, the column-integrated moisture advection causes the NWP-AAC-related convection to propagate northward. Our results provide a unifying view of multiscale Asian summer monsoon variability, with important implications for subseasonal to seasonal prediction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoyong Guan, guanzy@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 561.59 KB)
Save