• Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al. Eds., Cambridge University Press, 1217–1308.

  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dahleh, M., M. A. Dahleh, and G. Verghese, 2011: 6.241j: Lectures on dynamic systems and control. Massachusetts Institute of Technology: MIT OpenCourseWare, 354 pp., https://viterbi-web.usc.edu/~mihailo/courses/ee585/f17/mit-notes//mit-notes.pdf.

  • Danabasoglu, G., 2019: NCAR CESM2 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 2021, https://doi.org/10.22033/ESGF/CMIP6.2185.

    • Crossref
    • Export Citation
  • DelSole, T., 2001: Optimally persistent patterns in time-varying fields. J. Atmos. Sci., 58, 13411356, https://doi.org/10.1175/1520-0469(2001)058<1341:OPPITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demo, N., M. Tezzele, and G. Rozza, 2018: PyDMD: Python dynamic mode decomposition. J. Open Source Softw., 3, 530, https://doi.org/10.21105/joss.00530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2007: Evaluating EOF modes against a stochastic null hypothesis. Climate Dyn., 28, 517531, https://doi.org/10.1007/s00382-006-0195-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning. MIT Press, 800 pp., http://www.deeplearningbook.org.

  • Hamilton, J. D., 1994: Time Series Analysis. Princeton University Press, 816 pp.

    • Crossref
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.

  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93, 11 01511 021, https://doi.org/10.1029/JD093iD09p11015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • Iles, C., and G. Hegerl, 2017: Role of the North Atlantic Oscillation in decadal temperature trends. Environ. Res. Lett., 12, 114010, https://doi.org/10.1088/1748-9326/aa9152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., D. C. Collins, S. B. Feldstein, M. L. L’Heureux, and E. E. Riddle, 2014: Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Wea. Forecasting, 29, 2338, https://doi.org/10.1175/WAF-D-13-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessy, A., A. Lewin, and K. Strimmer, 2018: Optimal whitening and decorrelation. Amer. Stat., 72, 309314, https://doi.org/10.1080/00031305.2016.1277159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kramer, M. A., 1991: Nonlinear principal component analysis using autoassociative neural networks. AIChE J., 37, 233243, https://doi.org/10.1002/aic.690370209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutz, J. N., S. L. Brunton, B. W. Brunton, and J. L. Proctor, 2016a: Dynamic mode decomposition: An introduction. Dynamic Mode Decomposition, SIAM, 1–24, https://doi.org/10.1137/1.9781611974508.ch1.

    • Crossref
    • Export Citation
  • Kutz, J. N., X. Fu, and S. L. Brunton, 2016b: Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst., 15, 713735, https://doi.org/10.1137/15M1023543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, https://doi.org/10.1175/2009JCLI3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/OAR/ESRL PSL, 2019: Climate timeseries. Accessed 8 July 2019, https://psl.noaa.gov/gcos_wgsp/Timeseries/index.html.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Rasmussen, C. E., and C. K. Williams, 2006: Gaussian Processes for Machine Learning, Vol. 2. MIT Press, 248 pp.

    • Crossref
    • Export Citation
  • Runge, J., and Coauthors, 2015: Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun., 6, 8502, https://doi.org/10.1038/ncomms9502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, P. J., 2010: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech., 656, 528, https://doi.org/10.1017/S0022112010001217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tipping, M. E., and C. M. Bishop, 1999: Probabilistic principal component analysis. J. Roy. Stat. Soc., 61B, 611622, https://doi.org/10.1111/1467-9868.00196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J. H., C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, 2014: On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 1, 391421, https://doi.org/10.3934/jcd.2014.1.391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic Oscillation—Concepts and studies. Surv. Geophys., 22, 321381, https://doi.org/10.1023/A:1014217317898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., N. Schaller, C. O’Reilly, D. A. MacLeod, and T. Palmer, 2017: Atmospheric seasonal forecasts of the twentieth century: Multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution. Quart. J. Roy. Meteor. Soc., 143, 917926, https://doi.org/10.1002/qj.2976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., T. Schneider, J. M. Wallace, D. S. Battisti, and D. L. Hartmann, 2018: Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett., 45, 24872496, https://doi.org/10.1002/2017GL076327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiskott, L., and T. J. Sejnowski, 2002: Slow feature analysis: Unsupervised learning of invariances. Neural Comput., 14, 715770, https://doi.org/10.1162/089976602317318938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zito, T., N. Wilbert, L. Wiskott, and P. Berkes, 2009: Modular toolkit for data processing (MDP): A Python data processing framework. Front. Neuroinform., 2, 8, https://doi.org/10.3389/neuro.11.008.2008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 217 217 35
Full Text Views 107 107 20
PDF Downloads 122 122 21

Testing Methods of Pattern Extraction for Climate Data Using Synthetic Modes

View More View Less
  • 1 a School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this paper we develop a method to quantify the accuracy of different pattern extraction techniques for the additive space–time modes often assumed to be present in climate data. It has previously been shown that the standard technique of principal component analysis (PCA; also known as empirical orthogonal functions) may extract patterns that are not physically meaningful. Here we analyze two modern pattern extraction methods, namely dynamical mode decomposition (DMD) and slow feature analysis (SFA), in comparison with PCA. We develop a Monte Carlo method to generate synthetic additive modes that mimic the properties of climate modes described in the literature. The datasets composed of these generated modes do not satisfy the assumptions of any pattern extraction method presented. We find that both alternative methods significantly outperform PCA in extracting local and global modes in the synthetic data. These techniques had a higher mean accuracy across modes in 60 out of 60 mixed synthetic climates, with SFA slightly outperforming DMD. We show that in the majority of simple cases PCA extracts modes that are not significantly better than a random guess. Finally, when applied to real climate data these alternative techniques extract a more coherent and less noisy global warming signal, as well as an El Niño signal with a clearer spectral peak in the time series, and more a physically plausible spatial pattern.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. James Fulton, james.fulton@ed.ac.uk

Abstract

In this paper we develop a method to quantify the accuracy of different pattern extraction techniques for the additive space–time modes often assumed to be present in climate data. It has previously been shown that the standard technique of principal component analysis (PCA; also known as empirical orthogonal functions) may extract patterns that are not physically meaningful. Here we analyze two modern pattern extraction methods, namely dynamical mode decomposition (DMD) and slow feature analysis (SFA), in comparison with PCA. We develop a Monte Carlo method to generate synthetic additive modes that mimic the properties of climate modes described in the literature. The datasets composed of these generated modes do not satisfy the assumptions of any pattern extraction method presented. We find that both alternative methods significantly outperform PCA in extracting local and global modes in the synthetic data. These techniques had a higher mean accuracy across modes in 60 out of 60 mixed synthetic climates, with SFA slightly outperforming DMD. We show that in the majority of simple cases PCA extracts modes that are not significantly better than a random guess. Finally, when applied to real climate data these alternative techniques extract a more coherent and less noisy global warming signal, as well as an El Niño signal with a clearer spectral peak in the time series, and more a physically plausible spatial pattern.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. James Fulton, james.fulton@ed.ac.uk
Save